Abstract:
A surface coating material is provided for forming a hydrophilic oil repellent layer on at least a part of the surface of a substrate, and the surface coating material includes one or more fluorine-based compounds represented by the following formulas (1) to (4), a binder, and a solvent.
Abstract:
Provided are a resin composition for underlayer film formation with which a variation hardly occurs in the line width distribution after processing due to a small thickness of a residual film after mold pressing, a layered product, a method for forming a pattern, an imprint forming kit, and a process for producing a device.A resin composition for underlayer film formation includes a resin having a group represented by General Formula (A) and at least one group selected from a group represented by General Formula (B), an oxiranyl group and an oxetanyl group, a nonionic surfactant and a solvent. Ra1 represents a hydrogen atom or a methyl group, Rb1 and Rb2 each independently represent a group selected from an unsubstituted linear or branched alkyl group having 1 to 20 carbon atoms and an unsubstituted cycloalkyl group having 3 to 20 carbon atoms, Rb3 represents a group selected from an unsubstituted linear or branched alkyl group having 2 to 20 carbon atoms and an unsubstituted cycloalkyl group having 3 to 20 carbon atoms, and Rb2 and Rb3 may be bonded to each other to form a ring.
Abstract:
There is provided a dispersion composition containing (A) a metal oxide particle having a primary particle diameter of 1 nm to 100 nm, (B) a polymer compound represented by the specific formula having a weight average molecular weight of 5,000 to 8,000 and an acid value of 70 to 90 mgKOH/g, and (C) a solvent, and a curable composition containing the dispersion composition and (D) a polymerizable compound.
Abstract:
A gas barrier laminate 10 having an inorganic barrier layer 3 and a water-trapping layer 5 that are formed on a plastic base material 1, the water-trapping layer 5 including a matrix of a cationic polymer (a) in which is distributed a hygroscopic agent (b) having such a hygroscopic property as to attain a humidity lower than a humidity that can be attained by using the matrix. The gas barrier laminate exhibits super barrier property against water despite of a structure of a small number of layers.
Abstract:
Disclosed is an anti-static film including an anti-static layer on at least one surface of a resin film, wherein the anti-static layer includes an anti-static component-containing polymer (A), an alkylurea derivative (B) and a curing agent (C). The surface specific resistivity of the anti-static film at 23° C. and 50% RH is 1.0×1011 Ω/□ or less.
Abstract:
The present invention relates to a composition comprising a stable aqueous dispersion of polymer particles and a dispersant adsorbed onto the surfaces of TiO2 particles, wherein the dispersant is a water-soluble polymer functionalized with structural units of a carboxylic acid ester and tris(hydroxymethyl)aminomethane. The composition of the present invention is particularly useful for achieving high hiding for paints containing associative thickeners.
Abstract:
A hydrophilic surface treatment agent for an aluminum-containing metallic heat exchanger, which is obtained by mixing: a water-soluble resin (A) having at least one or more functional groups of an amide group, a hydroxyl group, and a carboxyl group, or a water-soluble resin (A) including, in a skeleton thereof, an amide linkage; colloidal silica (B); organo alkoxy silane and/or a hydrolysate thereof (C); a cross-linking agent (D) capable of forming cross-linkage with the water-soluble resin (A); and water (E), wherein the ratio {(B)+(C)}/{(A)+(B)+(C)+(D)} is 0.1 to 0.5 in terms of solid content ratio (mass ratio), and the ratio (C)/(B) is 0.5 to 4.0 in terms of solid content ratio (mass ratio).
Abstract:
The invention relates to coatings having a contact angle hysteresis with water measured by the sessile drop method of at most 20°. The coatings can be produced from a mixture of at least two different stellate prepolymers and/or stellate prepolymer/nanoparticle complexes which may cross-link to each other and to the surface of the substrate coated, wherein the stellate prepolymers and/or stellate prepolymer/nanoparticle complex have at least three hydrophilic polymer branches before cross-linking which are themselves soluble in water with on all or a part of the free ends thereof, silyl end groups R1 of general formula (I): R1=—CRa2—Si(ORb)r(Rc)3−r, where Ra=H or straight or branched chain 1-6C alkyl, ORb=a hydrolysable group, Rc=linear or branched chain 1-6C alkyl and r=a number from 1 to 3 and the optionally non silyl end group carrying ends have reactive end groups which a reactive with each other, with the substrate to be coated optional entities included in the coating and/or with the silyl end groups with the proviso the mixture (a) has at least one stellate prepolymer with 3-5 hydrophilic polymer branches and (b) at least one stellate prepolymer and/or a stellate prepolymer/nanoparticle complex with a least 6 hydrophilic polymer branches. The invention further relates to a method for production for said coatings and stellate prepolymers as used in the coatings. The invention furthermore relates to the use of the stellate prepolymers as additives in various materials for temporary or permanent anti-soiling treatment of surfaces.
Abstract:
Water-based coatings having writable-erasable surfaces are provided. The coatings have many desirable attributes. For example, the coatings cure under ambient conditions, have low or no VOC emissions during and upon curing, and have reduced tendency to form ghost images, even after prolonged normal use.
Abstract:
Water-based coatings having writable-erasable surfaces are provided. The coatings have many desirable attributes. For example, the coatings cure under ambient conditions, have low or no VOC emissions during and upon curing, and have reduced tendency to form ghost images, even after prolonged normal use.