Abstract:
The present invention is to provide a method for manufacturing a martensite-based precipitation strengthening stainless steel, which effectively enables crystal grains to become finer by improving a solution treatment method. The method for manufacturing a martensite-based precipitation strengthening stainless steel containing 0.01 to 0.05 mass % of C, 0.2 mass % or less of Si, 0.4 mass % or less of Mn, 7.5 to 11.0 mass % of Ni, 10.5 to 14.5 mass % of Cr, 1.75 to 2.50 mass % of Mo, 0.9 to 2.0 mass % of Al, less than 0.2 mass % of Ti, and Fe and impurities as a remainder, which is provided by the present invention, includes performing a solid solution treatment at 845 to 895° C. once or more.
Abstract:
The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M23C6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650° C.
Abstract:
A high-temperature piping product is configured from a plurality of primary pipe members and a welding material. The primary pipe members are each made from an Ni-based forged alloy containing: Ni, Al, and at least one of Mo and W. The total content of the Mo and the W being 3-8 mass %. The Ni-based forged alloy exhibiting a γ′-phase dissolution temperature of from 920 to 970° C., and the γ′ phase being precipitated in 30 volume % or more in a temperature range of from 700 to 800° C. The welding material is made from an Ni-based cast alloy having a cast structure formed by welding. The Ni-based cast alloy containing: Ni, Al, and at least one of Mo and W, the total content of the Mo and the W being 9-15 mass %, the Ni-based cast alloy exhibiting a γ′-phase dissolution temperature of from 850 to 900° C.
Abstract:
The invention relates to a martensitic stainless steel for plastic forming moulds requiring a high hardness and a good corrosion resistance. The stainless steel consists of in weight % (wt. %): C 0.56-0.82, N 0.08-0.25, C+N 0.60-1.0, Si 1.05-2.0, Mn 0.2-1.0, Cr 12-16, Mo 0.1-0.8, V 0.10-0.45, Al≦0.3, P≦0.05, S≦0.5, optional elements, and balance Fe impurities.
Abstract:
A method of manufacturing a turbine blade, the method comprising the steps of forming a forging by forging stainless steel; heat treating the forging; and cooling the forging after the heat treatment; wherein in the heat treatment and the cooling, a plurality of the forgings are arranged in alignment, and adjacent forgings of the plurality of forgings are disposed so that at least respective portions of portions of the adjacent forgings corresponding to a region from a portion corresponding to a platform of a turbine blade to a center in a longitudinal direction of the turbine blade face each other and warm each other via radiant heat.
Abstract:
A martensitic stainless steel containing, by mass %, C: 0.20% to 0.40%, N: 0.1% or less, Mo: 3% or less, and Cr: 12.0% to 16.0%, such that 0.3%≦C+N≦0.4% and a PI value (=Cr+3.3Mo+16N) is 18 or more, with the remainder being substantially Fe and unavoidable impurities is quenched from a temperature of 1,030° C. to 1,140° C. and subjected to a subzero treatment and tempering so as to obtain a prior austenite crystal grain size of a surface layer of 30 μm to 100 μm and a surface hardness of 58 HRc to 62 HRc.
Abstract:
An iron-based alloy includes (in weight percent) carbon from about 1 to about 2 percent; manganese up to about 1 percent; silicon up to about 1 percent; nickel up to about 4 percent; chromium from about 10 to about 25 percent; molybdenum from about 5 to about 20 percent; tungsten up to about 4 percent; cobalt from about 17 to about 23 percent; vanadium up to about 1.5 percent; boron up to about 0.2 percent; sulfur up to about 0.03 percent; nitrogen up to about 0.4 percent; phosphorus up to about 0.06 percent; niobium up to about 4 percent; iron from about 35 to about 55 percent; and incidental impurities. The chromium/molybdenum ratio of the iron-based alloy is from about 1 to about 2.5. The alloy is suitable for use in elevated temperature applications, such as valve seat inserts for combustion engines.
Abstract:
Forged precipitation-hardened stainless steel alloys are provided. The forged precipitation-hardened stainless steel alloy can include, by weight, about 14.0% to about 16.0% chromium, about 6.0% to about 8.0% nickel, about 1.25% to about 1.75% copper, about 1.0% to about 2.0% molybdenum, about 0.001% to about 0.05% carbon, a carbide forming element in an amount of about 0.3% to about 0.8% and greater than about 8 times that of carbon, the balance iron, and incidental impurities. Generally, the carbide forming element is selected from the group consisting of titanium, zirconium, tantalum, and a mixture thereof.
Abstract:
Ferritic stainless steel hot rolled sheet and steel strip excellent in toughness and corrosion resistance which have a predetermined chemical composition, have a Charpy impact value at 0° C. of 10 J/cm2 or more, and have a thickness of 5.0 to 9.0 mm.
Abstract translation:具有预定化学组成的韧性和耐腐蚀性优异的铁素体不锈钢热轧板和钢带在0℃下的夏比冲击值为10J / cm 2以上,厚度为5.0〜9.0mm。
Abstract:
A hollow screw and related process of making is provided, wherein the hollow screw is formed from a generally circular corrosion resistant stainless steel disk cut from flat roll stock. The hollow screw includes a head and an elongated and hollow shaft having a wall thickness between about 0.2 to about 0.7 millimeters extending therefrom and defining a shank portion and a threaded portion having a plurality of threads thereon with a rotational drive mechanism configured to facilitate tightening via the threads. The process involves annealing to soften the stamped hollow screw, followed by thread rolling, and then age hardening the hollow screw. As such, the resultant hollow screw is relatively lightweight, about 50% the mass of a solid core screw made from the same material, with a sufficient thread strength to meet most aerospace applications and contributes to important aircraft fuel economy.