Abstract:
Methods and systems for a complete vehicle ecosystem are provided. Specifically, systems that when taken alone, or together, provide an individual or group of individuals with an intuitive and comfortable vehicular environment. The present disclosure builds on integrating existing technology with new devices, methods, and systems to provide a complete vehicle ecosystem.
Abstract:
Technologies are described herein for providing a two-tier failover service. A request to access content by an application associated with an application identifier may be identified. A first record corresponding to the application identifier may be retrieved from a database information table. The first record may include a reference identifier, a database name of a database, and a failover value. A second record corresponding to the reference identifier may be retrieved from a server information table. The second record may include an indication of a first server computer as a primary server computer and an indication of a second server computer as a secondary server computer. A connection specification to either the first server computer or the second server computer may be generated based on the first record and the second record.
Abstract:
A cluster system includes a plurality of computing nodes connected to a network. Each node is configured to access its own storage device, and to send and receive input/output (I/O) operations associated with its own storage device. Further, each node of the plurality of nodes may be configured to have a function of acting as a first node, which sends a first message to other nodes of the plurality of nodes. The first message may include configuration information indicative of a data placement of data on the plurality of nodes in the cluster system according to an event. Following receipt of the first message from the first node, each of the other nodes may be configured to determine, based at least in part on the configuration information, whether data stored on its own storage device is affected by the event.
Abstract:
A primary processing unit entitlement is determined for a logical partition. A smaller secondary processing unit entitlement is also determined. A partition manager allocates primary processing units to the logical partition from a primary shared processor pool, and the logical partition is activated. The secondary processing units are reserved for the logical partition from a secondary shared processor pool, and the logical partition can be relocated to the secondary shared processor pool in response to a condition such as a hardware failure. The logical partition can continue to process its workload with the fewer processor resources, and can be restored to the primary processing unit entitlement.
Abstract:
A technique for operating a high-availability (HA) data processing system includes, in response to receiving an HA logout indication at a cache, initiating a walk of the cache to locate cache lines in the cache that include HA data. In response to determining that a cache line includes HA data, an address of the cache line is logged in a first portion of a buffer in the cache. In response to the first portion of the buffer reaching a determined fill level, contents of the first portion of the buffer are logged to another memory. In response to all cache lines in the cache being walked, the cache walk is terminated.
Abstract:
In certain embodiments, a tiered storage system is disclosed that provides for failover protection during data backup operations. The system can provide for an index, or catalog, for identifying and enabling restoration of backup data located on a storage device. The system further maintains a set of transaction logs generated by media agent modules that identify metadata with respect to individual data chunks of a backup file on the storage device. A copy of the catalog and transaction logs can be stored at a location accessible by each of the media agent modules. In this manner, in case of a failure of one media agent module during backup, the transaction logs and existing catalog can be used by a second media agent module to resume the backup operation without requiring a restart of the backup process.
Abstract:
A storage system includes a plurality of nodes connected to a network. Each node is capable of performing its own recovery of partially written data and maintaining consistency of the data stored on the storage system. The nodes may independently calculate the location of the data across the nodes and independently balance the data, maintain consistency based on a redundancy policy of the storage system, and migrate data according to a location change. If a node determines that the stored data thereon is incomplete or damaged, the node may reconstruct its respective data from replica data on other nodes. During migration of data between the nodes, I/O processing from a host is not interrupted in some examples.
Abstract:
Providing high availability multi-way conferencing. Separate signaling and media components may be provided within an MCU or among a cluster of MCUs. A signaling server may control signaling aspects of a conference while a media server may provide media support for the conference. In the event of media server failure, the signaling server may assign a new media server to provide media support for the conference. A backup signaling server may also monitor the signaling server and may provide signaling support for the conference in the event of signaling server failure.
Abstract:
Cloud-based virtual machines and offices are provided herein. Methods may include establishing a cloud-based virtual office, by providing selections, corresponding to backups of servers of a computing network, to a user interface, establishing a cloud gateway for the virtual office, virtualizing a backup for each server using a virtualization program to create the cloud-based virtual office that includes virtual server machines networked with one another via the cloud gateway, and providing a workload to the cloud-based virtual office.
Abstract:
A storage system has a RAID group configured by storage media, a system controller with a processor, a buffer memory coupled to storage devices and the processor by a communication network, and a cache memory coupled to the processor and the buffer memory by the network. A processor that stores first data, which is related to a write request from a host computer, in a cache memory, specifies a first storage device for storing data before update, which is data obtained before updating the first data, and transfers the first data to the specified first storage device. A first device controller transmits the first data and second data based on the data before update, from the first storage device to the system controller. The processor stores the second data in the buffer memory, specifies a second storage device, and transfers the stored second data to the specified second storage device.