Abstract:
An arc magnetron is described in which an edge magnet arrangement is displaceable in the axial direction relative to a preferably fixedly mounted center pole permanent magnet so that a cathode sputtering process and/or an arc discharge process can be realized in dependence on the relative position of the edge magnet arrangement and the center pole magnet.
Abstract:
A magnetron sputtering apparatus includes a rotatable magnet. At least a portion of the centerline of the magnet lies on a curve defined by ##EQU1## where .xi.(u) is a preselected erosion profile. When stationary, the magnet generates a localized magnetic field of approximately constant width. In operation, when the magnet is rotated, it generates the preselected erosion profile in the target. The preselected erosion profile may be constant.
Abstract:
A planar magnetron etching device having a movable magnetic source which is moved with respect to a substrate to cause lines magnetic flux parallel to the surface of the substrate to sweep above the surface of the substrate during the etching process.
Abstract:
A method and a system for adjustable coating on a substrate using a magnetron sputtering apparatus are provided. The method comprises the steps of providing a magnetron assembly which comprises a plurality of magnets attached to a plurality of yokes and a plurality of actuating mechanisms (208), each operatively coupled to at least one of the plurality of yokes. The method further comprises automatically determining individual positions of each of the plurality of yokes of the magnetron assembly on the basis of at least one parameter, and adjusting individually positions of each of the plurality of yokes of the magnetron assembly in accordance with the automatically determined individual positions.
Abstract:
A sputtering apparatus includes a back plate supporting a sputtering target, a magnet module disposed under the back plate and including a magnet unit reciprocating in a first direction, a first shielding member attached on a portion of the magnet unit, moving together with the magnet unit, and covering at least a portion of the magnet unit, a protective sheet disposed between the back plate and the magnet module, and a second shielding member disposed between the back plate and the magnet module, and having a fixed position.
Abstract:
A magnet assembly is disclosed for steering ions used in the formation of a material layer upon a substrate during a pulsed DC physical vapour deposition process. Apparatus and methods are also disclosed incorporating the assembly for controlling thickness variation in a material layer formed via pulsed DC physical vapour deposition. The magnet assembly comprises a magnetic field generating arrangement for generating a magnetic field proximate the substrate and means for rotating the ion steering magnetic field generating arrangement about an axis of rotation, relative to the substrate. The magnetic field generating arrangement comprises a plurality of magnets configured to an array which extends around the axis of rotation, wherein the array of magnets are configured to generate a varying magnetic field strength along a radial direction relative to the axis of rotation.
Abstract:
A chamber includes a target (16) and a magnetron (50) disposed over the target (16). The magnetron (50) includes a plurality of magnets (52, 54). The magnetron (50) has a longitudinal dimension and a lateral dimension. The longitudinal dimension of the magnetron (50) is tilted with respect to the target (16) so the distances between magnets (52, 54) and the target (16) vary. As the magnetron (50) rotates during operation, the strength of the magnetic field produced by the magnetron (50) is an average of the various strengths of magnetic fields produced by the magnets (52, 54). The averaging of the strengths of the magnetic fields leads to uniform film properties and uniform target erosion.
Abstract:
A deposition system provides a feature that may reduce costs of the sputtering process by increasing a target change interval. The deposition system provides an array of magnet members which generate a magnetic field and redirect the magnetic field based on target thickness measurement data. To adjust or redirect the magnetic field, at least one of the magnet members in the array tilts to focus on an area of the target where more target material remains than other areas. As a result, more ion, e.g., argon ion bombardment occurs on the area, creating more uniform erosion on the target surface.
Abstract:
A cathode unit includes first and second magnet units that are driven to rotate around an axis on a side opposed to a sputtering surface of a target. The first magnet unit is configured to cause a first leakage magnetic field to act on a space in front of the sputtering surface including a target center inward. The second magnet unit is configured to cause a second leakage magnetic field to act locally in the space in front of the sputtered surface located between the target center and the outer edge of the target and to enable self-holding discharge under low pressure of plasma confined by the second leakage magnetic field.
Abstract:
A magnetically enhanced low temperature high density plasma chemical vapor deposition (LT-HDP-CVD) source has a hollow cathode target and an anode, which form a gap. A cathode target magnet assembly forms magnetic field lines substantially perpendicular to the cathode surface. A gap magnet assembly forms a magnetic field in the gap that is coupled with the cathode target magnetic field. The magnetic field lines cross the pole piece electrode positioned in the gap. The pole piece is isolated from ground and can be connected to a voltage power supply. The pole piece can have negative, positive, floating, or RF electrical potentials. By controlling the duration, value, and sign of the electric potential on the pole piece, plasma ionization can be controlled. Feed gas flows through the gap between the hollow cathode and anode. The cathode can be connected to a pulse power or RF power supply, or cathode can be connected to both power supplies. The cathode target and substrate can be inductively grounded.