Abstract:
The invention provides a method for detecting a target nucleotide sequence by tagging the nucleotide sequence with a nucleotide tag, providing a probe oligonucleotide with a melting temperature Tm1, comprising a regulatory sequence and a nucleotide tag recognition sequence; incorporating the probe oligonucleotide into the tagged polynucleotide in a polynucleotide amplification reaction, providing a regulatory oligonucleotide with a melting temperature Tm2, comprising a sequence segment that complementary to the regulatory sequence and a tail segment that does not hybridize to the probe nucleotide when the sequence segment and the regulatory sequence are annealed, amplifying the tagged target nucleic acid sequence in a PCR amplification reaction using the probe oligonucleotide as a primer, and using a DNA polymerase with high strand displacement activity and low 5′-nuclease activity, and detecting the amplification product; wherein Tm1 and Tm2 are higher than the annealing temperature associated with the polynucleotide amplification reaction.
Abstract:
The invention provides a method for detecting a target nucleotide sequence by tagging the nucleotide sequence with a nucleotide tag, providing a probe oligonucleotide with a melting temperature Tm1, comprising a regulatory sequence and a nucleotide tag recognition sequence; incorporating the probe oligonucleotide into the tagged polynucleotide in a polynucleotide amplification reaction, providing a regulatory oligonucleotide with a melting temperature Tm2, comprising a sequence segment that is at least partially complementary to the regulatory sequence, amplifying the tagged target nucleic acid sequence in a PCR amplification reaction using the probe oligonucleotide as a primer, and detecting the amplification product; wherein Tm1 and Tm2 are higher than the annealing temperature associated with the polynucleotide amplification reaction.
Abstract:
Provided are microfluidic devices and methods for fabricating and bonding such devices. Also provided are kits for analyzing analyte-containing samples and for lysing cells.
Abstract:
A microfluidic device includes a plurality of first flow channels and a plurality of second flow channels, each such second flow channel intersecting multiple of the first flow channels to define intersecting volumes and a plurality of looped flow channels that each include segments of the flow channels between the intersecting volumes to define a closed loop. The microfluidic device also includes a plurality of control valves each such control valve having a control channel and a deformable segment disposed to restrict flow through a respective one of the first and second flow channels in response to an actuation force applied to the control channel to deflect the deformable segment. The microfluidic device further includes a pump operatively disposed to regulate flow through one of the looped flow channels to regulate flow by the recirculating pump.
Abstract:
Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing. Reaction products may be harvested and/or further analyzed in some cases.
Abstract:
An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
Abstract:
New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
Abstract:
In certain embodiments, the present invention provides a way of “digitally” marking different the alleles of different chromosomes by using a transposase to insert differently barcoded transposons into genomic DNA before further analysis. According to this method, each allele becomes marked with a unique pattern of transposon barcodes. Because each unique pattern of transposon barcodes identifies a particular allele, the method facilitates determinations of ploidy and copy number variation, improves the ability to discriminate among homozygotes, heterozygotes, and patterns arising from sequencing errors, and allows loci separated by uninformative stretches of DNA to be identified as linked loci, thereby facilitating haplotype determinations. Also provided is a novel artificial transposon end that includes a barcode sequence in two or more positions that are not essential for transposition.
Abstract:
The invention provides a method for detecting a target nucleotide sequence by tagging the nucleotide sequence with a nucleotide tag, providing a probe oligonucleotide with a melting temperature Tm1, comprising a regulatory sequence and a nucleotide tag recognition sequence; incorporating the probe oligonucleotide into the tagged polynucleotide in a polynucleotide amplification reaction, providing a regulatory oligonucleotide with a melting temperature Tm2, comprising a sequence segment that is at least partially complementary to the regulatory sequence, amplifying the tagged target nucleic acid sequence in a PCR amplification reaction using the probe oligonucleotide as a primer, and detecting the amplification product; wherein Tm1 and Tm2 are higher than the annealing temperature associated with the polynucleotide amplification reaction.