Abstract:
A method includes forming a plurality of fins in a semiconductor substrate using a common patterning process. A conductive layer is formed above the plurality of fins. A mask is formed above the conductive layer. The conductive layer is etched using the mask to define trenches in the conductive layer. A first insulating layer is formed above the conductive layer and in the trenches. First and second contacts are formed connected to respective ends of the conductive layer.
Abstract:
The present disclosure provides in some aspects a semiconductor device and a method of forming a semiconductor device. According to some illustrative embodiments herein, the semiconductor device includes an active region formed in a semiconductor substrate, a gate structure disposed over the active region, source/drain regions formed in the active region in alignment with the gate structure, and an insulating material region buried into the active region under the gate structure, wherein the insulating material region is surrounded by the active region and borders a channel region in the active region below the gate structure along a depth direction of the active region.
Abstract:
Integrated circuits having improved contacts and improved methods for fabricating integrated circuits having contacts are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with a source/drain region. The method deposits an interlayer dielectric material over the semiconductor substrate. Further, the method etches the interlayer dielectric material to form a hole defining an exposed portion of the source/drain region. The method includes forming a contact forming a contact in the hole over the exposed portion of the source/drain region and forming an interconnect in the hole over the contact.
Abstract:
A methodology for forming a compressive strain layer with increased thickness that exhibits improved device performance and the resulting device are disclosed. Embodiments may include forming a recess in a source or drain region of a substrate, implanting a high-dose impurity in a surface of the recess, and depositing a silicon-germanium (SiGe) layer in the recess.
Abstract:
A structure comprises a semiconductor substrate, a semiconductor-on-insulator region and a bulk region. The semiconductor-on-insulator region comprises a first semiconductor region, a dielectric layer provided between the semiconductor substrate and the first semiconductor region, and a first transistor comprising an active region provided in the first semiconductor region. The dielectric layer provides electrical isolation between the first semiconductor region and the semiconductor substrate. The bulk region comprises a second semiconductor region provided directly on the semiconductor substrate.
Abstract:
The present disclosure provides an improved method for forming a thin semiconductor alloy layer on top of a semiconductor layer. The proposed method relies on an implantation of appropriate impurity species before performing deposition of the semiconductor alloy film. The implanted species cause the semiconductor alloy layer to be less unstable to wet and dry etches performed on the device surface after deposition. Thus, the thickness uniformity of the semiconductor alloy film may be substantially increased if the film is deposited after performing the implantation. On the other hand, some implanted impurities have been found to decrease the growth rate of the semiconductor alloy layer. Thus, by selectively implanting appropriate impurities in predetermined portions of a wafer, a single deposition step may be used in order to form a semiconductor alloy layer with a thickness which may be locally adjusted at will.
Abstract:
A semiconductor structure comprises a substrate and a transistor. The transistor comprises a raised source region and a raised drain region provided above the substrate, one or more elongated semiconductor lines, a gate electrode and a gate insulation layer. The one or more elongated semiconductor lines are connected between the raised source region and the raised drain region, wherein a longitudinal direction of each of the one or more elongated semiconductor lines extends substantially along a horizontal direction that is perpendicular to a thickness direction of the substrate. Each of the elongated semiconductor lines comprises a channel region. The gate electrode extends all around each of the channel regions of the one or more elongated semiconductor lines. The gate insulation layer is provided between each of the one or more elongated semiconductor lines and the gate electrode.
Abstract:
A semiconductor structure is provided including a transistor, the transistor including one or more elongated semiconductor regions, each of the one or more elongated semiconductor regions having a channel region, a gate electrode, wherein the gate electrode is provided at least at two opposite sides of each of the one or more elongated semiconductor regions, and a layer of a stress-creating material, the stress-creating material providing a variable stress, wherein the layer of stress-creating material is arranged to provide a stress at least in the channel region of each of the one or more elongated semiconductor regions, the stress provided in the channel region of each of the one or more elongated semiconductor regions being variable.
Abstract:
The present disclosure provides semiconductor device structures with a first PMOS active region and a second PMOS active region provided within a semiconductor substrate. A silicon germanium channel layer is only formed over the second PMOS active region. Gate electrodes are formed over the first and second PMOS active regions, wherein the gate electrode over the second PMOS active region is formed over the silicon germanium channel.
Abstract:
A semiconductor device includes a first transistor having first drain and source regions and a first channel region and a second transistor having second drain and source regions and a second channel region. A first silicon/carbon alloy material is embedded in the first drain and source regions, the first silicon/carbon alloy material inducing a first strain component along a first channel length direction of the first channel region. A second silicon/carbon alloy material is embedded in the second drain and source regions, the second silicon/carbon alloy material inducing a second strain component along a second channel length direction of the second channel region, wherein the second strain component is of an opposite type of the first strain component.