Abstract:
An adaptive method for suppressing video signal echoes in television equalizers including digital filters having coefficients which are updated in an adaptive and iterative manner using a modified LMS (Least Mean Square) algorithm until the difference, or output error, between a target output signal, called the reference signal, and an outgoing signal from the equalizer is gradually reduced. The method includes the steps of:--applying a "combing" technique to an original filter having K*N coefficients in order to select K comb filters having N coefficients each;--applying said LMS algorithm, with a variable convergence factor to each individual comb filter for a predetermined number of iterations;--gathering the resultant configurations of the comb filter coefficients and selecting a subfilter with N largest modulo coefficients therefrom;--updating the values of said N coefficients again by reiterating the LMS algorithm with variable convergence factor to said subfilter for a limited number of iterations;--clearing all the coefficients with a lower modulo value than a predetermined threshold value;--selecting a group of F coefficients by a slotting operation across those of said coefficients which have a cluster value: and--updating the value of said group of F coefficients, by reiterating the LMS algorithm with variable convergence factor, until the output error becomes smaller than a predetermined value.
Abstract:
To reduce the number of depleted cells and the errors caused thereby, the memory array includes groups of control transistors corresponding to groups of memory cells. The control transistors of each group are NMOS transistors having the drain terminal connected to a control line. Each of the control transistors corresponds to a row portion of the memory array. Each control transistor has a control gate connected to a respective word line and a source region connected by a respective source line to the source regions of the memory cells in the same row and group.
Abstract:
A testing contactor is provided for testing small-size semiconductor devices with large currents at high frequencies. Each semiconductor device to be tested has a plurality of leads. The testing contactor includes a plurality of first electric contact elements. A first Kelvin contact for a lead is formed of a first electric contact element in contact with the lead. The testing contactor further includes a plurality of second electric contact elements and a plurality of electric connection elements. An electric connection element in contact with the lead effectively extends the lead. A second Kelvin contact is formed of a second electric contact element and an electric connection element, the second electric contact element in contact with the electric connection element and the electric connection element in contact with the lead.
Abstract:
A threshold voltage generator for a field-effect transistor, being of a type adapted to compensate for variations of the threshold voltage from a nominal value, comprising a first amplifier having a first input connected to a current generator; a second amplifier connected ahead of a second input of the first amplifier and having an input connected to another current generator; and a third amplifier connected after the first amplifier and having an output adapted to produce the value of said threshold voltage.
Abstract:
A dam is provided on a surface of a circuit board to which an integrated circuit device is to be mounted. The dam defines a region between the integrated circuit package and the circuit board, and a material is injected into this region after the device has been mounted on the circuit board. This material preferably is a good thermal conductor, assisting in the removal of heat from the device. The injected material also preferably acts as an adhesive, more firmly bonding the device the circuit board.
Abstract:
The PSRR (power supply rejection ratio) of a current mirror circuit is increased by cascoding the output transistor of the current mirror, and the precision of the circuit is enhanced by employing a frequency compensated gain stage utilizing a field effect transistor to drive a bipolar current output transistor.
Abstract:
A manufacturing process for an integrated circuit which includes at least one vertical-current-flow MOS transistor. The patterned photoresist which screens the body implant is also used to mask the etching of a nitride layer over a pad oxide. After the photoresist is cleared, the nitride pattern is transferred into the oxide, and the resulting oxide/nitride stack is used to mask the source implant. The nitride/oxide stack is then removed, the gate oxide is grown, and the gate layer is then deposited.
Abstract:
A process for simultaneously fabricating memory cells, transistors, and diodes for protecting the tunnel oxide layer of the cells, using the DPCC process wherein the first polysilicon layer is not removed from the transistor area, and the gate regions of the transistors are formed by shorted first and second polysilicon layers. To form the diodes, the polyl layer is removed from the active areas in which the diodes are to be formed, using the same mask employed for shaping polyi; the interpoly dielectric layer and the gate oxide layer are removed from the active areas of the diodes, using the same mask employed for removing the dielectric layer from the transistor area; a second polysilicon layer is deposited directly on to the active areas of the diodes; and the poly2 doping ions penetrate the active areas to form N+ regions which, together with the substrate, constitute the protection diodes. The diodes are thus formed prior to shaping poly2, and are connected to the control gates of the cells by the second polycrystalline silicon layer strips forming the word lines.
Abstract:
A circuit for synthesizing an impedance associated with a telephone subscriber's circuit connected to a two-wire telephone line is described. The circuit of the invention is adapted to synthesize a complex impedance which can function both as a termination impedance and a balance impedance. The termination impedance utilizes a positive feedback loop structure having a loop gain which is at all times less than unity. The circuit that implements both the termination and balance impedances with sidetone suppression is also described. Each of the embodiments is realizable with a single external component consisting of a resistor.
Abstract:
A plug contact process wherein, after contact holes are etched, an adhesion layer (such as Ti/TiN) and a filler metal (such as tungsten) are deposited overall. A two-stage etch is then used: First, the filler metal is etched preferentially with respect to the adhesion layer, until an endpoint signal first indicates that said adhesion layer is exposed. No overetch is used at this stage. Thereafter a nonpreferential etch is used to clear residues of the filler metal, while also uniformly reducing the height of the adhesion layer. This prevents the tops of the plugs in the contact holes from being recessed. Aluminum (or other metal) is then deposited and patterned (using a stack etch to remove the undesired portions of the adhesion layer too) to implement the desired wiring pattern. This process thereby reduces voids, and resulting metallization defects, in a process with high-aspect-ratio contacts. In addition, the residual adhesion layer helps to reduce electromigration.