Abstract:
An interleaver has a birefringent element assembly and a reflector configured so as to direct light from the birefringent element assembly back into and through birefringent element assembly. The birefringent element assembly has at least one birefringent element. Directing light from the birefringent element assembly back through the birefringent element assembly enhances transmission characteristics and/or mitigates dispersion.
Abstract:
An improved microelectronic structure is disclosed. The improved structure includes an air-gap region formed by removing an insulating material through an aperture residing in a mask.
Abstract:
An interconnect fabrication process and structure provides barrier enhancement at the via sidewalls and improved capability to fabricate high aspect ratio dual damascene interconnects. A via structure is patterned into the via dielectric first, then a dielectric barrier (for example, anisotropically etched silicon nitride) is formed only along the via sidewalls in the dual damascene structure prior to deposition of a metal barrier (for example, Ta/TaN). In this way, the effective barrier thickness along the bottom of the via is increased, eliminating the structure's susceptibility to metal migration. The absence of dielectric barrier along the interconnect trench sidewalls leads to low interconnect resistance and low interconnect capacitance. The present invention also provides an improved fabrication method for obtaining high aspect ratio dual damascene interconnect structures.
Abstract:
An interconnect structure and fabrication method are provided to form air gaps between interconnect lines and between interconnect layers. A conductive material is deposited and patterned to form a first level of interconnect lines. A first dielectric layer is deposited over the first level of interconnect lines. One or more air gaps are formed in the first dielectric layer to reduce inter-layer capacitance, intra-layer capacitance or both inter-layer and intra-layer capacitance. At least one support pillar remains in the first dielectric layer to promote mechanical strength and thermal conductivity. A sealing layer is deposited over the first insulative layer to seal the air gaps. Via holes are patterned and etched through the sealing layer and the first dielectric layer. A conductive material is deposited to fill the via holes and form conductive plugs therein. Thereafter, a conductive material is deposited and patterned to form a second level of interconnect lines.
Abstract:
A copper bonding pad is directly supported by a copper via pad structure, the copper via pad structure having substantially the same geometry and dimensions as the copper bonding pad. The combination of the copper bonding pad and the copper via pad structure results in an increase in effective thickness of the copper bonding pad. Due to this effective increase in the bonding pad thickness, the bonding pad is more tolerant to the potential dishing problem caused by the CMP process. Additional metal pad structures and via pad structures are used below the bonding pad. The additional metal pad structures and via pad structures comprise alternating segments of interconnect metal and dielectric fillers, and alternating segments of via metal and dielectric fillers, respectively. The alternating segments of interconnect metal and dielectric fillers and the alternating segments of via metal and dielectric fillers prevent or reduce the potential dishing problem that otherwise exists in damascene and CMP processing. The alternating segments of interconnect metal and dielectric fillers and the alternating segments of via metal and dielectric fillers are arranged such that there are a number of columns of solid metal support under the bonding pad. The columns of solid metal support significantly improve the poor mechanical support otherwise provided by the low dielectric constant materials that are presently used in fabrication of modern copper integrated circuits. The columns of solid metal support also improve thermal conductivity of the bonding pad.
Abstract:
Dual damascene methods and structures are provided for IC interconnects which use a dual-damascene process incorporating a low-k dielectric material, high conductivity metal, and an improved hard mask scheme. A pair of hard masks are employed: a silicon dioxide layer and a silicon nitride layer, wherein the silicon dioxide layer acts to protect the silicon nitride layer during dual damascene etch processing, but is subsequently sacrificed during CMP, allowing the silicon nitride layer to act as a the CMP hard mask. In this way, delamination of the low-k material is prevented, and any copper-contaminated silicon dioxide material is removed.
Abstract:
A method for utilizing electroless copper deposition to form interconnects on a semiconductor. Once a via or a trench is formed in a dielectric layer, a titanium nitride (TiN) or tantalum (Ta) barrier layer is deposited. Then, a catalytic copper seed layer is conformally blanket deposited in vacuum over the barrier layer. Next, without breaking the vacuum, an aluminum protective layer is deposited onto the catalytic layer to encapsulate and protect the catalytic layer from oxidizing. An electroless deposition technique is then used to auto-catalytically deposit copper on the catalytic layer. The electroless deposition solution dissolves the overlying protective layer to expose the surface of the underlying catalytic layer. The electroless copper deposition occurs on this catalytic surface, and continues until the via/trench is filled. Subsequently, the copper and barrier material are polished by an application of chemical-mechanical polishing (CMP) to remove excess copper and barrier material from the surface, so that the only copper and barrier material remaining are in the via/trench openings. Then an overlying silicon nitride (SiN) layer is formed above the exposed copper in order to form a dielectric barrier layer. The copper interconnect is fully encapsulated from the adjacent material by the TiN (or Ta) barrier layer and the overlying SiN layer.
Abstract:
A technique for electrolessly depositing a CoWP barrier material on to copper and electrolessly depositing copper onto a CoWP barrier material to prevent copper diffusion when forming layers and/or structures on a semiconductor wafer.
Abstract:
Systems and methods for a call over network (CON) with a visualized summary are provided. In some embodiments, after the call concludes, a visualized summary of the call can be generated. The summary includes any of the recording of the call, transcriptions, scenario information, speaker information and the duration each speaker was talking, etc. Scenario may be generated by comparing the call speaking pattern to known templates of call types. Additionally, participant features employed in the call may be summarized in chronological relation to the calls progression in a visual format.
Abstract:
Systems and methods for improving quality of a call over network (CON) are provided. Call quality may be improved via pathway testing to determine data path quality. This may be utilized to inform buffering lengths, and also may be utilized to choose the data pathway utilized for transmitting the data. Pathway testing may employ collecting microphone data on one device, transmitting it across the various pathways, and then comparing the quality at the endpoint compared to the initial data.