Abstract:
A non-volatile memory cell including a semiconductor substrate having a fin shaped upper surface with a top surface and two side surfaces. Source and drain regions are formed in the fin shaped upper surface portion with a channel region there between. A conductive floating gate includes a first portion extending along a first portion of the top surface, and second and third portions extending along first portions of the two side surfaces, respectively. A conductive control gate includes a first portion extending along a second portion of the top surface, second and third portions extending along second portions of the two side surfaces respectively, a fourth portion extending up and over at least some of the floating gate first portion, and fifth and sixth portions extending out and over at least some of the floating gate second and third portions respectively.
Abstract:
The disclosed embodiments comprise a flash memory device that can be configured to operate as a read only memory device. In some embodiments, the flash memory device can be configured into a flash memory portion and a read only memory portion.
Abstract:
The present invention relates to a flash memory system wherein one or more circuit blocks utilize fully depleted silicon-on-insulator transistor design to minimize leakage
Abstract:
Systems and methods are disclosed for providing selective threshold voltage characteristics via use of MOS transistors having differential threshold voltages. In one exemplary embodiment, there is provided a metal oxide semiconductor device comprising a substrate of semiconductor material having a source region, a drain region and a channel region therebetween, an insulating layer over the channel region, and a gate portion of the insulating layer. Moreover, with regard to the device, the shape of the insulating layer and/or the shape or implantation of a junction region are of varied dimension as between the gate-to-drain and gate-to-source junctions to provide differential threshold voltages between them.
Abstract:
A circuit and method are disclosed for operating a non-volatile memory device, comprising time sampling a reference current or voltage in a floating holding node to obtain a hold voltage and applying the hold voltage in sensing circuitry.
Abstract:
A non-volatile memory device comprises a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is located in the semiconductor substrate and arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. During the operations of program, read, or erase, a negative voltage can be applied to the word lines and/or coupling gates of the selected or unselected memory cells.
Abstract:
A non-volatile memory cell including a semiconductor substrate having a fin shaped upper surface with a top surface and two side surfaces. Source and drain regions are formed in the fin shaped upper surface portion with a channel region there between. A conductive floating gate includes a first portion extending along a first portion of the top surface, and second and third portions extending along first portions of the two side surfaces, respectively. A conductive control gate includes a first portion extending along a second portion of the top surface, second and third portions extending along second portions of the two side surfaces respectively, a fourth portion extending up and over at least some of the floating gate first portion, and fifth and sixth portions extending out and over at least some of the floating gate second and third portions respectively.
Abstract:
A non-volatile memory device that includes N planes of non-volatile memory cells (where N is an integer greater than 1). Each plane of non-volatile memory cells includes a plurality of memory cells configured in rows and columns. Each of the N planes includes gate lines that extend across the rows of the memory cells therein but do not extend to others of the N planes of non-volatile memory cells. A controller is configured to divide each of a plurality of words of data into N fractional-words, and program each of the N fractional-words of each word of data into a different one of the N planes of non-volatile memory cells. The controller uses a programming current and a program time period for the programming, and can be configured to vary the programming current by a factor and inversely vary the program time period by the factor.