Abstract:
The invention relates to a lubricant which can be used as a mandrel lubricant with a content of 75 to 90 wt. % of graphite and contains 1 to 10 wt. % of a phosphate. Said lubricant can also contain 1 to 4 wt % alkali silicate, 1 to 10 wt. % bentonite, 0.5 to 1 wt. % silico-phosphate and common solid lubricants. Said lubricant is preferably used as an aqueous suspension with a solid content of 20 to 40 wt. %.
Abstract:
The present invention provides compositions and methods for the coating and/or ballistics conditioning of firearm projectiles and firearm components including gun barrels, firearm chambers, fully assembled cartridges, shot gun shells, shotgun wads, shot capsules and sabots with molybdenum disulfide. The composition comprises powdered molybdenum disulfide suspended in a carrier comprising a volatile solvent and a binder selected from cellulosic-, alkyd- and acrylic-resins. Methods for the conditioning of firearm bores by the formation of a hardened layer comprising a product of the reaction or interaction of molybdenum disulfide with materials in the barrel bore are also disclosed.
Abstract:
A stainless steel wire is plated with nickel (Ni) to a thickness of from not less than 1 .mu.m to not more than 5 .mu.m. An inorganic salt coat film mainly composed of at least one of potassium sulfate and borax (borate) and free from fluorine (F) or chlorine (Cl) is then deposited on the nickel (Ni) plate 2 as the substrate. The steel wire is then drawn to a reduction of area of not less than 60% to adjust the surface roughness thereof to a range of from 0.80 to 12.5 .mu.mRz, preferably from 1.0 to 10.0 .mu.mRz.
Abstract:
Provided are a thermally conductive silicone composition, a thermally conductive material and a thermally conductive silicone grease, wherein a liquid silicone, an aluminum nitride powder and a zinc oxide powder are comprised, and wherein the total amount of those powders are from 500 to 1,000 parts by weight per 100 parts by weight of the liquid silicone and the ratio of the zinc oxide powder to the sum total of the aluminum nitride powder and the zinc oxide powder is from 0.05 to 0.5 by weight.
Abstract:
In accordance with the method according to the invention, for the production of the plastics overlay, first of all a paste is made of a plastics dispersion and fillers. This paste is free of organic solvents and is applied to a sintered porous metal layer. The multilayer material thus produced is then sintered. Since the use of organic solvents is dispensed with, health risks and the risk of fire are reduced. Moreover, the composite materials produced according to the invention exhibit excellent cavitation resistance. In addition to conventional lubricant-free applications, such as bearings, these composite materials may consequently be used in particular in gear pumps and shock absorbers.
Abstract:
A self lubricating, friction and wear reducing composite material useful over a wide temperature range of from cryogenic temperature up to about 900.degree. C. contains 60-80 wt. % of particulate Cr.sub.2 O.sub.3, dispersed in a metal binder of a metal alloy containing Cr and at least 50 wt. % of Ni, Cr or a mixture of Ni and Cr. It also contains 5-20 wt. % of a fluoride of at least one Group I, Group II, or rare earth metal and, optionally, 5-20 wt. % of a low temperature lubricant metal. Such as Ag, Au, Pt, Pd, Rh and Cu. This composite exhibits less oxidation instability and less abrasiveness than composites containing chromium carbide, is readily applied using plasma spray and can be ground and polished with a silicon carbide abrasive.
Abstract:
An article having a multiphase composite lubricant coating of a hard refractory matrix phase of titanium nitride dispersed with particles of a solid lubricating phase of molybdenum disulfide is prepared by heating the article to temperatures between 350.degree. and 850.degree. C. in a reaction vessel at a reduced pressure and passing a gaseous mixture of Ti((CH.sub.3).sub.2 N).sub.4, MoF.sub.6, H.sub.2 S and NH.sub.3 over the heated article forming a multiphase composite lubricant coating on the article.
Abstract:
A reducible glass lubricant on a metal workpiece provides a duplex film during hot working of the workpiece. A silicate glass powder which contains from about 3 to 50 mole percent of an oxide of bismuth, tin or copper is used for the reducible glass lubricant. During preheating in a preheat furnace the glass lubricant is reduced to the duplex glass film.
Abstract:
A lubricant for use in hot rolling of high chromium stainless steel, the lubricant being continuously supplied to surfaces of hot rolling rolls in contact with the steel being rolled at least during hot rolling of the stainless steel, which lubricant comprises a viscous aqueous solution of water soluble high molecular weight thickener and from 10 to 40% by weight of iron hydroxide powder dispersed in the aqueous solution, said iron hydroxide powder having a median particle size of from not less than 0.1 .mu.m to less than 1 .mu.m and said lubricant having an apparent viscosity within the range of from 1,000 to 50,000 cP.
Abstract:
Disclosed is a lubricant carrier salt for facilitating the cold forming of a workpiece of iron or steel, based on boric acid and/or alkali borate. The salt has an additional content of aliphatic di- or tricarboxylic acid, which either is unsubstituted or substituted by at least one hydroxyl group, and/or of alkali salts thereof, the weight ratio of boric acid/alkali borate to the acid is (5 to 15):1. Especially appropriate carboxylic acids are malonic acid, maleic acid, succinic acid, tartaric acid and/or citric acid.Inorganic or organic thickening agents, such as bentonite and/or polysaccharide, aluminate and/or silicate, dispersants, lubricants and/or antioxidants as well as titanium salt can be contained as additional components in the lubricant carrier salt of the invention.Also disclosed is a method for facilitating the cold working of a workpiece of iron or steel, in which the lubricant carrier salt is applied to the workpiece, provided if desired with a phosphate coating, out of an aqueous solution or dispersion with a concentration of 5 to 30 wt-% and with a temperature of 80 to 100.degree. C. by the immersion or pass-through method.