Abstract:
The present invention relates to the identification of genetic markers patients with high risk B-precursor acute lymphoblastic leukemia (B-ALL) and associated methods and their relationship to therapeutic outcome. The present invention also relates to diagnostic, prognostic and related methods using these genetic markers, as well as kits which provide microchips and/or immunoreagents for performing analysis on leukemia patients.
Abstract:
The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
Abstract:
A method of forming a virtually defect free lattice mismatched nanoheteroepitaxial layer is disclosed. The method includes forming an interface layer on a portion of a substrate. A plurality of seed pads are then formed by self-directed touchdown by exposing the interface layer to a material comprising a semiconductor material. The plurality of seed pads, having an average width of about 1 nm to 10 nm, are interspersed within the interface layer and contact the substrate. An epitaxial layer is then formed by lateral growth of the seed pads over the interface layer.
Abstract:
In accordance with the invention, there is a method of forming a nanochannel including depositing a photosensitive film stack over a substrate and forming a pattern on the film stack using interferometric lithography. The method can further include depositing a plurality of silica nanoparticles to form a structure over the pattern and removing the pattern while retaining the structure formed by the plurality of silica nanoparticles, wherein the structure comprises an enclosed nanochannel.
Abstract:
Embodiments provide a quantum dot active structure and a methodology for its fabrication. The quantum dot active structure includes a substrate, a plurality of alternating regions of a quantum dot active region and a strain-compensation region, and a cap layer. The strain-compensation region is formed to eliminate the compressive strain of an adjacent quantum dot active region, thus allowing quantum dot active regions to be densely-stacked. The densely-stacked quantum dot active region provides increased optical modal gain for semiconductor light emitting devices such as edge emitting lasers, vertical cavity lasers, detectors, micro-cavity emitters, optical amplifiers or modulators.
Abstract:
In accordance with invention, there are methods for fabricating hollow spheres and nanofoams. The method for making hollow spheres can include providing a homogeneous precursor solution including a first solvent and one or more anhydrous precursor species and forming aerosol droplets having a first size distribution using the homogeneous precursor solution in an anhydrous carrier gas. The method can also include transporting the aerosol droplets through an aerosol reactor including a reactant to form a plurality of hollow spheres, wherein each of the plurality of hollow spheres can be formed by one or more chemical reactions occurring at a surface of the aerosol droplet. The method can further include controlling size and thickness of the hollow spheres by one or more of the precursor solution concentration, aerosol droplet size, temperature, residence time of the aerosol droplets in the aerosol reactor, and the reactant distribution in the aerosol reactor.
Abstract:
Exemplary embodiments provide a semiconductor fabrication method including a combination of monolithic integration techniques with wafer bonding techniques. The resulting semiconductor devices can be used in a wide variety of opto-electronic and/or electronic applications such as lasers, light emitting diodes (LEDs), phototvoltaics, photodetectors and transistors. In an exemplary embodiment, the semiconductor device can be formed by first forming an active-device structure including an active-device section disposed on a thinned III-V substrate. The active-device section can include OP and/or EP VCSEL devices. A high-quality monolithic integration structure can then be formed with low defect density through an interfacial misfit dislocation. In the high-quality monolithic integration structure, a thinned III-V mating layer can be formed over a silicon substrate. The thinned III-V substrate of the active-device structure can subsequently be wafer-bonded onto the thinned III-V mating layer of the high-quality monolithic integration structure forming an optoelectronic semiconductor device on silicon.
Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
Systems and methods for addressable field enhancement microscopy are provided. In an embodiment, a nanoscale array of islands may be illuminated with an electromagnetic signal and addressed to differentiate signals from different islands of the nanoscale array. The differentiated signals originating from illuminating the nanoscale array may be applied to microscopy of a specimen.
Abstract:
A method for separation of mixtures in fluidic systems through electrokinetic transport by use of nanochannels when the fluidic systems approach the size of an electrical double layer, thereby allowing separation based on charge. The disclosed apparatus comprises a T-chip with a nanochannel section. The method and apparatus are useful for separation of many molecular species, including peptides, proteins, and DNA.