Abstract:
An electronics assembly includes a semiconductor die assembly, an enclosure affixed to the semiconductor die assembly, the enclosure defining first and second chambers over the semiconductor die assembly, and first and second optical elements mounted in the first and second chambers, respectively. The semiconductor die assembly includes a semiconductor die encapsulated in a molded material, an encapsulation layer located on the top surface of the semiconductor die, and at least one patterned metal layer and at least one dielectric layer over the encapsulation layer. Conductive pillars extend through the encapsulation layer for electrical connection to the semiconductor die. The encapsulation layer blocks optical crosstalk between the first and second chambers. A method is provided for making the electronics assembly.
Abstract:
A method comprises depositing an optical filter layer on a glass wafer, then cutting the wafer into dice. The dice are positioned on a carrier and encapsulated in a molding compound to form a reconstituted wafer, and the wafer is back-ground and polished. Lens faces are positioned on opposing surfaces of the glass dice and spacers are positioned on one side of the wafer. The wafer is then cut into lens modules, each having two side-by-side lenses with an opaque molding compound barrier between. The individual modules are attached to devices that require dual lenses, such as, e.g., proximity sensors that use a light source and a light receiver or detector.
Abstract:
A low profile chip scale module and method of making of the same. The low profile chip scale module includes embedded SMD and integrated EM shielding. An adhesive layer is arranged on a substrate, e.g., chip carrier. Dies and SMDs are arranged on the adhesive layer. An etched frame and molding is attached to the substrate. Inputs/outputs (I/O) are formed and the substrate is coated with a dielectric material. Metal lines and connections among bond pads are formed and another layer of dielectric material is applied as a protective layer. The substrate is cut into various predetermined sizes and a lens is attached to form the chip scale module.
Abstract:
Methods and devices for packaging integrated circuits. A packaged device may include an integrated circuit, a first packaging component including a patterned surface, and a second packaging component. The patterned surface of the first packaging component may be adhesively coupled to a surface of the second packaging component or a surface of the integrated circuit. The integrated circuit may be at least partially enclosed between the first and second packaging components. A packaging method may include patterning a surface of a packaging component of an integrated circuit package. The surface of the packaging component may be for adhesively coupling to a second component to at least partially enclose an integrated circuit in the integrated circuit package.
Abstract:
An integrated circuit is formed having an array of memory cells located in the dielectric stack above a semiconductor substrate. Each memory cell has two adjustable resistors and two heating elements. A dielectric material separates the heating elements from the adjustable resistors. One heating element alters the resistance of one of the resistors by applying heat thereto to write data to the memory cell. The other heating element alters the resistance of the other resistor by applying heat thereto to erase data from the memory cell.
Abstract:
A flip-chip fan-out wafer level package for package-on-package applications includes a semiconductor die with solder bumps on an upper surface in a flip chip configuration. The die is inverted, with an upper surface facing an upper side of a redistribution layer, with the solder bumps in electrical contact with respective chip contact pads of the redistribution layer. The redistribution layer includes conductive traces that place each of the solder bumps in electrical contact with one or both of one of a plurality of upper redistribution contact pads and one of a plurality of lower redistribution contact pads. Each of the plurality of upper redistribution contact pads has an upper solder ball in electrical contact therewith. The die and the upper solder balls are at least partially encapsulated in a layer of mold compound positioned on the upper surface of the redistribution layer, and whose lateral dimensions are defined by the lateral dimensions of the redistribution layer. The layer of mold compound has a back-ground surface at which a portion of each of the upper solder balls is exposed, for electrical contact with an upper package. Each of the lower redistribution contact pads has a lower solder ball a coupled thereto.
Abstract:
Sensors for air flow, temperature, pressure, and humidity are integrated onto a single semiconductor die within a miniaturized Venturi chamber to provide a microelectronic semiconductor-based environmental multi-sensor module that includes an air flow meter. One or more such multi-sensor modules can be used as building blocks in dedicated application-specific integrated circuits (ASICs) for use in environmental control appliances that rely on measurements of air flow. Furthermore, the sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. By integrating the Venturi chamber with accompanying environmental sensors, correction factors can be obtained and applied to compensate for temporal humidity fluctuations and spatial temperature variation using the Venturi apparatus.
Abstract:
Embodiments are directed to a package that includes an electric device having a recess. In one embodiment, the electric device is a sensor and the recess reduces signal drift of the sensor caused by thermal expansion of the package. In another embodiment, the recess is substantially filled with adhesive material, thus increasing adhesion between the electric device and a substrate of the package while at the same time allowing for lower adhesive fillets.
Abstract:
A device and method for minimizing the forces that may compromise a lead frame mount to a support structure in an integrated circuit die package during various packaging method steps. When a window clamp is used to provide pressure during a lead frame bonding step or during a wire bonding step during packaging, the vertical force applied by the window clamp may be transferred in lateral direction by the physical contour of the top plate of the support structure. By changing the physical contour of the top plate of the support structure, such as by disposing a specific kind of contoured protrusion, one may minimize or eliminate the lateral forces that act against achieving a solid bond of the lead frame to the support structure. Further, during wire bonding, the same minimization or elimination of lateral forces lead to improved wire bonding.
Abstract:
A bar formed from a reconstituted wafer and containing one or more conductive material filled voids is used to electrically and physically connect the top and bottom packages in a package-on-package (PoP) package. The bar is disposed in the fan out area of the lower package forming the PoP package.