Abstract:
The present disclosure relates to a methods and systems for high speed laser surgery. In some implementations, the combination of mid-infrared (mid-IR) laser radiation with micro-scanning technology allows for large tissue ablation rates with minimal thermally affected zones, where micro-scanning distributes the heat generated by laser surgery over a large tissue area. Micro-scanning technology is compatible with hollow core fiber technology which can be implemented to deliver near diffraction limited mid-IR laser beams into the vicinity of the target area. Micro-scanning technology is compatible with hand tools for direct replacement of mechanical surgical tools such as scalpels as well as robotic surgery. Micro-scanning technology is also compatible with endoscopic beam delivery and can be combined with endoscopic tissue analysis. Tissue analysis can be performed with optical imaging technology as well as other analytical tools such as mass spectrometers.
Abstract:
Frequency standards based on mode-locked fiber lasers, fiber amplifiers and fiber-based ultra-broad bandwidth light sources, and applications of the same.
Abstract:
High power parallel fiber arrays for the amplification of high peak power pulses are described. Fiber arrays based on individual fiber amplifiers as well as fiber arrays based on multi-core fibers can be implemented. The optical phase between the individual fiber amplifier elements of the fiber array is measured and controlled using a variety of phase detection and compensation techniques. High power fiber array amplifiers can be used for EUV and X-ray generation as well as pumping of parametric amplifiers.
Abstract:
A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
Abstract:
The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. In some embodiments an effective CDSL is constructed with only one laser. At least one embodiment includes a coherent scanning laser system (CSL) for generating pulse pairs with a time varying time delay. A CDSL, effective CDSL, or CSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.
Abstract:
In at least one embodiment a laser system includes a fiber laser source, a polarization controller and a wavelength converter. The relative power distribution between a pump wavelength and a signal wavelength is controllable using the polarization controller. An optional phase compensator is used to control polarization state of the output laser beam. In various embodiments the relative power distribution among multiple wavelengths may be controlled over a range of at least about 100:1.
Abstract:
Coherent and compact supercontinuum light sources for the mid IR spectral regime are disclosed and exemplary applications thereof. The supercontinuum generation is based on the use of highly nonlinear fibers or waveguides. In at least one embodiment the coherence of the supercontinuum sources is increased using low noise mode locked short pulse sources. Compact supercontinuum light sources can be constructed with the use of passively mode locked fiber or diode lasers. Wavelength tunable sources can be constructed using appropriate optical filters or frequency conversion sections. Highly coherent supercontinuum sources further facilitate coherent detection schemes and can improve the signal/noise ratio in lock in detection schemes.
Abstract:
Examples of methods and systems for laser processing of materials are disclosed. Methods and systems for singulation of a wafer comprising a coated substrate can utilize a laser outputting light that has a wavelength that is transparent to the wafer substrate but which may not be transparent to the coating layer(s). Using techniques for managing fluence and focal condition of the laser beam, the coating layer(s) and the substrate material can be processed through ablation and internal modification, respectively. The internal modification can result in die separation.
Abstract:
Various embodiments described herein comprise a laser and/or an amplifier system including a doped gain fiber having ytterbium ions in a phosphosilicate glass. Various embodiments described herein increase pump absorption to at least about 1000 dB/m-9000 dB/m. The use of these gain fibers provide for increased peak-powers and/or pulse energies. The various embodiments of the doped gain fiber having ytterbium ions in a phosphosilicate glass exhibit reduced photo-darkening levels compared to photo-darkening levels obtainable with equivalent doping levels of an ytterbium doped silica fiber.
Abstract:
Frequency standards based on mode-locked fiber lasers, fiber amplifiers and fiber-based ultra-broad bandwidth light sources, and applications of the same.