Abstract:
Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer.
Abstract:
Multi-layer structures are electrochemically fabricated by depositing a first material, selectively etching the first material (e.g. via a mask), depositing a second material to fill in the voids created by the etching, and then planarizing the depositions so as to bound the layer being created and thereafter adding additional layers to previously formed layers. The first and second depositions may be of the blanket or selective type. The repetition of the formation process for forming successive layers may be repeated with or without variations (e.g. variations in: patterns; numbers or existence of or parameters associated with depositions, etchings, and or planarization operations; the order of operations, or the materials deposited). Other embodiments form multi-layer structures using operations that interlace material deposited in association with some layers with material deposited in association with other layers.
Abstract:
Embodiments of the invention provide threaded elements alone, in mating pairs, or in conjunction with other elements. Embodiments of the invention also provide for design and fabrication of such threaded elements without violating minimum feature size design rules or causing other interference issues that may result from the fabrication of such thread elements using a multi-layer multi-material electrochemical fabrication process.
Abstract:
A counterfeiting deterrent device according to one implementation of the disclosure includes a plurality of layers formed by an additive process. Each of the layers may have a thickness of less than 100 microns. At least one of the layers has a series of indentations formed in an outer edge of the layer such that the indentations can be observed to verify that the device originated from a predetermined source. According to another implementation, a counterfeiting deterrent device includes at least one raised layer having outer edges in the shape of a logo. A light source is configured and arranged to shine a light through a slit in a substrate layer of the device and past an intermediate layer to light up the outer edge of the raised layer. The layers of the device are formed by an additive process and have a thickness of less than 100 microns each.
Abstract:
A method for removing a volume of tissue from a tongue in a patient to treat sleep apnea may involve cutting tissue from the tongue using a tissue cutting device having a shaft and at least one moveable cutting member attached to the shaft at a distal end of the tissue cutting device and moving the cut tissue through a channel of the shaft in a direction from the distal end of the tissue cutting device toward a proximal end of the device. A device for removing a volume of tissue from a tongue in a patient to treat sleep apnea may include a shaft, at least one moveable cutting member disposed at a distal end of a distal tip of the shaft, a handle coupled with a proximal portion of the shaft, and an actuator.
Abstract:
Embodiments are directed to forming three-dimensional millimeter scale or micro-scale structures from single or multiple sheets or layers of material via electro discharge machining (EDM). In some embodiments, the electrodes are formed by single layer or multi-layer, single material or multi-material deposition processes. In some embodiments single electrodes form a plurality of parts or structures simultaneously. In some embodiments a sacrificial bridging material is used to hold parts together during and after EDM processing.
Abstract:
Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.
Abstract:
Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer.
Abstract:
Embodiments of the invention provide threaded elements alone, in mating pairs, or in conjunction with other elements. Embodiments of the invention also provide for design and fabrication of such threaded elements without violating minimum feature size design rules or causing other interference issues that may result from the fabrication of such thread elements using a multi-layer multi-material electrochemical fabrication process.
Abstract:
Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that (1) partially coats the surface of the structure, (2) completely coats the surface of the structure, and/or (3) completely coats the surface of structural material of each layer from which the structure is formed including interlayer regions. These embodiments incorporate both the core material and the shell material into the structure as each layer is formed along with a sacrificial material that is removed after formation of all layers of the structure. In some embodiments the core material may be a material that would be removed with sacrificial material if it were accessible by an etchant during removal of the sacrificial material.