Abstract:
Embodiments of the present disclosure may provide methods of forming an IC structure with a pair of metal fins. An IC structure with a pair of metal fins can include two unitary metal fins positioned on a substrate and each including an elongated wire positioned on the substrate and a via positioned directly on a portion of the elongated wire, the elongated wire and the via of each unitary metal fin defining an inverted T-shape, wherein each unitary metal fin includes the elongated wire with a pair of opposing sidewalls substantially coplanar with a pair of opposing sidewalls of the via, and wherein the each unitary metal fin includes a single crystallographic orientation. An insulating layer can be positioned directly laterally between the two unitary metal fins.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes selectively depositing a metal layer overlying a metal line of a metallization layer that is disposed in an ILD layer of dielectric material while an upper surface of the ILD layer that is laterally adjacent to the metal line is exposed. A hard mask layer is formed overlying the upper surface of the ILD layer laterally adjacent to the metal layer. The metal layer is removed to expose the metal line while leaving the hard mask layer intact. An interconnect is formed with the metal line adjacent to the hard mask layer.
Abstract:
One method disclosed herein includes forming at least one sacrificial sidewall spacer adjacent a sacrificial gate structure that is formed above a semiconducting substrate, removing at least a portion of the sacrificial gate structure to thereby define a gate cavity that is laterally defined by the sacrificial spacer, forming a replacement gate structure in the gate cavity, removing the sacrificial spacer to thereby define a spacer cavity adjacent the replacement gate structure, and forming a low-k spacer in the spacer cavity. A novel device disclosed herein includes a gate structure positioned above a semiconducting substrate, wherein the gate insulation layer has two upstanding portions that are substantially vertically oriented relative to an upper surface of the substrate. The device further includes a low-k sidewall spacer positioned adjacent each of the vertically oriented upstanding portions of the gate insulation layer.
Abstract:
One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a barrier layer in the trench/via, forming a copper-based seed layer on the barrier layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure. A device disclosed herein includes a layer of insulating material, a copper-based conductive structure positioned in a trench/via within the layer of insulating material and a copper-based silicon or germanium nitride layer positioned between the copper-based conductive structure and the layer of insulating material.
Abstract:
Embodiments herein provide a magnetic tunnel junction (MTJ) formed between metal layers of a semiconductor device. Specifically, provided is an approach for forming the semiconductor device using only one or two masks, the approach comprising: forming a first metal layer in a dielectric layer of the semiconductor device, forming a bottom electrode layer over the first metal layer, forming a MTJ over the bottom electrode layer, forming a top electrode layer over the MTJ, patterning the top electrode layer and the MTJ with a first mask, and forming a second metal layer over the top electrode layer. Optionally, the bottom electrode layer may be patterned using a second mask. Furthermore, in another embodiment, an insulator layer (e.g., manganese) is formed atop the dielectric layer, wherein a top surface of the first metal layer remains exposed following formation of the insulator layer such that the bottom electrode layer contacts the top surface of the first metal layer. By forming the MTJ between the metal layers using only one or two masks, the overall number of processing steps is reduced.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a barrier layer overlying a metal line of a metallization layer above a semiconductor substrate using an atomic layer deposition (ALD) process and a physical vapor deposition (PVD) process. A liner-forming material is deposited overlying the barrier layer to form a liner. A conductive metal is deposited overlying the liner.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a barrier layer overlying a metal line of a metallization layer above a semiconductor substrate using an atomic layer deposition (ALD) process and a physical vapor deposition (PVD) process. A liner-forming material is deposited overlying the barrier layer to form a liner. A conductive metal is deposited overlying the liner.
Abstract:
Embodiments of the invention provide a semiconductor structure and a method of forming a semiconductor structure. Embodiments of the semiconductor structure have a plurality of fins on a substrate. The semiconductor has, and the method achieves, a silicide layer formed on and substantially surrounding at least one epitaxial region formed on a top portion of the plurality of fins. Embodiments of the present invention provide a method and structure for forming a conformal silicide layer on the epitaxial regions that are formed on the top portion of unmerged fins of a finFET.
Abstract:
Embodiments of the invention provide a semiconductor structure and a method of forming a semiconductor structure. Embodiments of the semiconductor structure have a plurality of fins on a substrate. The semiconductor has, and the method achieves, a silicide layer formed on and substantially surrounding at least one epitaxial region formed on a top portion of the plurality of fins. Embodiments of the present invention provide a method and structure for forming a conformal silicide layer on the epitaxial regions that are formed on the top portion of unmerged fins of a finFET.
Abstract:
Greater planarity is achieved between surfaces of a conductive structure and a layer within which the conductive structure resides. A portion of the conductive structure protruding above the surface of the layer is selectively oxidized, at least in part, to form an oxidized portion. The oxidized portion is then removed, at least partially, to facilitate achieving greater planarity. The protruding portions may optionally be formed by selectively disposing conductive material over the conductive structure, when that the conductive structure is initially recessed below the surface of the layer. A further embodiment includes selectively oxidizing a portion of the conductive structure below the surface of the layer, removing at least some of the oxidized portion so that an upper surface of the conductive structure is below the upper surface of the layer, and planarizing the upper surface of the layer to the upper surface of the conductive structure.