Abstract:
A semiconductor chip assembly includes a semiconductor chip, a conductive trace, an insulative adhesive and a hardened connection joint. The conductive trace includes first and second opposing surfaces and a peripheral sidewall between the surfaces, the first surface faces away from the pad and the peripheral sidewall overlaps the pad. The adhesive is between the second surface and the pad. The connection joint contacts the first surface, the peripheral sidewall and the pad, extends between the peripheral sidewall and the pad and electrically connects the conductive trace and the pad. Preferably, the connection joint is reflowed solder or cured conductive adhesive. A method of manufacturing the assembly includes disposing the adhesive between the conductive trace and the pad, then etching the adhesive thereby exposing the pad, then depositing a non-solidified material on the first surface, the peripheral sidewall and the pad, and then transforming the non-solidified material into the connection joint.
Abstract:
A semiconductor chip assembly includes a semiconductor chip attached to a support circuit. The support circuit includes a conductive trace. A ball bond contacts and electrically connects the conductive trace and the pad. A method of manufacturing the assembly includes mechanically attaching the chip to the support circuit and then forming the ball bond using thermocompression or thermosonic wire bonding.
Abstract:
A three-dimensional stacked semiconductor package includes first and second semiconductor chip assemblies and a conductive bond. The first semiconductor chip assembly includes a first semiconductor chip and a first conductive trace with a first routing line and a first pillar. The second semiconductor chip assembly includes a second semiconductor chip and a second conductive trace with a second routing line and a second pillar. The chips are aligned with one another, and the pillars are disposed outside the peripheries of the chips and aligned with one another. The conductive bond contacts and electrically connects the pillars.
Abstract:
A flip chip assembly, and methods of forming the same, including a single layer or multilayer substrate in which via holes serve as connections between a semiconductor chip and the substrate. The assembling steps comprise attaching a chip to a substrate having a plurality of via holes for connecting respective traces on the substrate with respective input/output terminal pads of the chip. The via holes are aligned with and placed on top of the pads so that the pads are exposed through the opposite side of the substrate. Electrically conductive material is subsequently deposited in the via holes as well as on the surface of the pads to provide electrical connections between the pads and the traces. Electrically conductive materials include electroless plated metals, electrochemical plated metals, solders, epoxies and conductive polymers.
Abstract:
A method of selectively fabricating metallization on a dielectric substrate is disclosed. A seed layer is sputtered on a polymer dielectric, a patterned photoresist mask is disposed over the seed layer, exposed portions of the seed layer are etched, the photoresist is stripped, and copper is deposited without a mask by electroless plating on the unetched seed layer to form well-adhering high density copper lines without exposing the photoresist to the electroless bath.
Abstract:
A method for selectively electroplating a metallic coating, such as solder, onto a plurality of small and closely spaced electrical contacts. The method includes sealingly enclosing the contacts in an electroplating cell having an anode, a cathode and a chamber, forming an electrical connection between the cathode and the contacts and electroplating the contacts.
Abstract:
A method and apparatus for selectively electroplating a metallic coating, such as solder, onto a plurality of small and closely spaced electrical contacts. The method includes sealingly enclosing the contacts in an electroplating cell having an anode, a cathode and a chamber, forming an electrical connection between the cathode and the contacts and electroplating the contacts.
Abstract:
A method for patterning electroless plated metal on a polymer substrate. In a first embodiment a substrate is first coated with a polymer suitable for complexing a seed metal which can initiate electroless plating. The polymer is then mixed with a seed metal such as palladium, selectively irradiated to form the desired conductor pattern, and then etched so that the desired pattern remains. The substrate is subsequently placed in an electroless plating bath to form a metal pattern. In a second embodiment, before applying the seed metal a substrate immersed in a polymer solution suitable for complexing a seed metal can be selectively irradiated to selectively deposit polymer on the substrate, followed by applying a seed metal to form a polymer-seed metal mixture and an electroless plating bath. In addition, an alkaline chemical may be added to an acidic polymer to prevent the polymer from etching metal on the substrate.