Abstract:
A method of making a semiconductor chip assembly includes providing a bump and a ledge, mounting an adhesive on the ledge including inserting the bump into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the bump with an aperture in the conductive layer, then flowing the adhesive between the bump and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, then mounting a semiconductor device on the bump opposite a cavity in the bump, wherein a heat spreader includes the bump and a base that includes a portion of the ledge adjacent to the bump, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a substrate and an adhesive. The semiconductor device is electrically connected to the substrate and thermally connected to the heat spreader. The heat spreader includes a post and a base. The post extends upwardly through an opening in the adhesive into an aperture in the substrate, and the base extends laterally from the post. The adhesive extends between the post and the substrate and between the base and the substrate. The substrate includes first and second conductive layers and a dielectric layer therebetween and provides horizontal signal routing between a pad and a terminal at the first conductive layer.
Abstract:
A method of making a stackable semiconductor assembly that includes a semiconductor device, a heat spreader, an adhesive, a terminal, a plated through-hole and build-up circuitry is disclosed. The heat spreader includes a bump, a base and a flange. The bump defines a cavity. The semiconductor device is mounted on the bump at the cavity, electrically connected to the build-up circuitry and thermally connected to the bump. The bump extends from the base into an opening in the adhesive, the base extends vertically from the bump opposite the cavity and the flange extends laterally from the bump at the cavity entrance. The build-up circuitry provides signal routing for the semiconductor device. The plated through-hole provides signal routing between the build-up circuitry and the terminal. The heat spreader provides heat dissipation for the semiconductor device.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The heat spreader includes a thermal post and a base. The thermal post extends upwardly from the base into a first opening in the adhesive, and the base extends laterally from the thermal post. The conductive trace includes a pad, a terminal and a signal post. The signal post extends upwardly from the terminal into a second opening in the adhesive.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a thermal post and a base. The conductive trace includes a pad, a terminal and a signal post. The semiconductor device extends into a cavity in the thermal post, is electrically connected to the conductive trace and is thermally connected to the heat spreader. The thermal post extends upwardly from the base into a first opening in the adhesive, and the signal post extends upwardly from the terminal into a second opening in the adhesive. The conductive trace is located outside the cavity and provides signal routing between the pad and the terminal.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the post with an aperture in the conductive layer, then flowing the adhesive into and upward in a gap located in the aperture between the post and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, providing a cap on the post, mounting a semiconductor device on a heat spreader that includes the post, the base and the cap, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a substrate and an adhesive. The semiconductor device is electrically connected to the substrate and thermally connected to the heat spreader. The heat spreader includes a post and a base. The post extends upwardly from the base into an opening in the adhesive and an aperture in the substrate, and the base extends laterally from the post. The adhesive extends between the post and the substrate and between the base and the substrate. The assembly provides signal routing between a pad and a terminal.
Abstract:
A method of making a semiconductor chip assembly includes mechanically attaching a semiconductor chip to a routing line, forming a metal pillar on the routing line, forming an encapsulant that covers the chip and the metal pillar, grinding the encapsulant without grinding the metal pillar, then grinding the encapsulant and the metal pillar such that the encapsulant and the metal pillar are laterally aligned, and then attaching a heat sink to the metal pillar.
Abstract:
A method of making a semiconductor chip assembly includes providing a metal base, a routing line, a bumped terminal and a filler, wherein the routing line contacts the bumped terminal and the filler, then mechanically attaching a semiconductor chip to the metal base, the routing line, the bumped terminal and the filler, then forming an encapsulant, then etching the metal base to expose the bumped terminal, and then grinding the bumped terminal to expose the filler.
Abstract:
A semiconductor chip assembly includes a semiconductor chip that includes a conductive pad, a conductive trace that includes a routing line and a metal pillar, a connection joint that electrically connects the routing line and the pad, and an encapsulant. The chip and the metal pillar are embedded in the encapsulant, the routing line extends laterally beyond the metal pillar towards the chip, and the metal pillar is welded to the routing line.