Radio frequency (RF) power harvesting circuit

    公开(公告)号:US10224759B2

    公开(公告)日:2019-03-05

    申请号:US14792891

    申请日:2015-07-07

    Inventor: Nadim Khlat

    Abstract: Aspects disclosed in the detailed description include a wireless charging circuit comprising a radio frequency (RF) power harvesting circuit. In one aspect, the RF power harvesting circuit is configured to harvest a wireless RF charging signal provided by a wireless charging station to generate a direct-current (DC) charging signal to charge a battery, for example, a lithium-ion (Li-ion) battery, in a battery-operated electronic device. In another aspect, a wireless charging controller controls the RF power harvesting circuit to dynamically increase or decrease an effective charging power of the DC charging signal according to a target charging power determined according to a charging profile of the battery. By dynamically adjusting the effective charging power provided to the battery according to the charging profile of the battery, it is possible to provide fast charging to the battery while protecting the battery from overcharging damage.

    Direct current (DC) voltage converter operation mode transition

    公开(公告)号:US10090762B2

    公开(公告)日:2018-10-02

    申请号:US14831080

    申请日:2015-08-20

    Abstract: A direct current (DC) voltage converter configured to transition between operation modes is disclosed. A voltage selection circuitry is provided in a DC voltage conversion circuit to control a buck-boost converter that generates a DC output voltage. As opposed to conventional methods of switching the buck-boost converter between a buck mode and a boost mode based on a single switching threshold, the voltage selection circuitry is configured to switch the buck-boost converter between the buck mode and the boost mode based on multiple voltage thresholds. Each of the multiple voltage thresholds defines a respective range for the DC output voltage. By controlling the buck-boost converter based on multiple voltage thresholds, it is possible to provide a smoother transition between the buck mode and the boost mode, thus reducing voltage errors in the DC output voltage and improving reliability of the DC voltage conversion circuit.

    Low distortion antenna switching circuitry

    公开(公告)号:US10075200B2

    公开(公告)日:2018-09-11

    申请号:US14560399

    申请日:2014-12-04

    CPC classification number: H04B1/006

    Abstract: Antenna switching circuitry includes an antenna node, a number of signal path nodes, and a number of switching elements. Each one of the switching elements is coupled between a different one of the signal path nodes and the antenna node. At least two of the signal path nodes are coupled together in order to form a low distortion node, such that the switching elements between the low distortion node and the antenna node are used to pass a low-distortion radio frequency (RF) signal. By coupling two of the signal path nodes together, a low distortion signal path is created to the antenna. Creating a low distortion signal path using multiple switching elements allows for the size of the switching elements to remain small, which reduces the parasitic capacitance of each one of the switches and therefore the insertion loss of the antenna switching circuitry.

    Encapsulated dies with enhanced thermal performance

    公开(公告)号:US10020206B2

    公开(公告)日:2018-07-10

    申请号:US15173037

    申请日:2016-06-03

    Abstract: The present disclosure relates to enhancing the thermal performance of encapsulated flip chip dies. According to an exemplary process, a plurality of flip chip dies are attached on a top surface of a carrier, and a first mold compound is applied over the top surface of the carrier to encapsulate the plurality of flip chip dies. The first mold compound is thinned down to expose a substrate of each flip chip die and the substrate of each flip chip die is then substantially etched away to provide an etched flip chip die that has an exposed surface at the bottom of a cavity. Next, a second mold compound with high thermal conductivity is applied to substantially fill each cavity and the top surface of the second mold compound is planarized. Finally, the encapsulated etched flip chip dies can be marked, singulated, and tested as a module.

    Encapsulated dies with enhanced thermal performance

    公开(公告)号:US09997376B2

    公开(公告)日:2018-06-12

    申请号:US15173037

    申请日:2016-06-03

    Abstract: The present disclosure relates to enhancing the thermal performance of encapsulated flip chip dies. According to an exemplary process, a plurality of flip chip dies are attached on a top surface of a carrier, and a first mold compound is applied over the top surface of the carrier to encapsulate the plurality of flip chip dies. The first mold compound is thinned down to expose a substrate of each flip chip die and the substrate of each flip chip die is then substantially etched away to provide an etched flip chip die that has an exposed surface at the bottom of a cavity. Next, a second mold compound with high thermal conductivity is applied to substantially fill each cavity and the top surface of the second mold compound is planarized. Finally, the encapsulated etched flip chip dies can be marked, singulated, and tested as a module.

    Encapsulated dies with enhanced thermal performance

    公开(公告)号:US09960054B2

    公开(公告)日:2018-05-01

    申请号:US15173037

    申请日:2016-06-03

    Abstract: The present disclosure relates to enhancing the thermal performance of encapsulated flip chip dies. According to an exemplary process, a plurality of flip chip dies are attached on a top surface of a carrier, and a first mold compound is applied over the top surface of the carrier to encapsulate the plurality of flip chip dies. The first mold compound is thinned down to expose a substrate of each flip chip die and the substrate of each flip chip die is then substantially etched away to provide an etched flip chip die that has an exposed surface at the bottom of a cavity. Next, a second mold compound with high thermal conductivity is applied to substantially fill each cavity and the top surface of the second mold compound is planarized. Finally, the encapsulated etched flip chip dies can be marked, singulated, and tested as a module.

Patent Agency Ranking