Abstract:
An electronic substrate includes a non-conductive body and one or more conductive features coupled to the non-conductive body. Each of the conductive features includes a base layer. To preserve the performance and conductivity of the one or more conductive features, each of the conductive features includes a protective layer formed over the base layer. The protective layer may include a first layer of silver formed over the base layer and a second layer of palladium formed over the first layer. By depositing the protective layer over the base layer of each of the conductive features, oxidation and exposure of the conductive features is prevented, or at least substantially reduced, since the first layer and the second layer provide a migration barrier for the metal in the base layer. However, the performance and conductivity of the conductive features are maintained due to the low resistivity of silver and palladium.
Abstract:
The present disclosure relates to enhancing the thermal performance of encapsulated flip chip dies. According to an exemplary process, a plurality of flip chip dies are attached on a top surface of a carrier, and a first mold compound is applied over the top surface of the carrier to encapsulate the plurality of flip chip dies. The first mold compound is thinned down to expose a substrate of each flip chip die and the substrate of each flip chip die is then substantially etched away to provide an etched flip chip die that has an exposed surface at the bottom of a cavity. Next, a second mold compound with high thermal conductivity is applied to substantially fill each cavity and the top surface of the second mold compound is planarized. Finally, the encapsulated etched flip chip dies can be marked, singulated, and tested as a module.
Abstract:
In one embodiment, a meta-module having circuitry for two or more modules is formed on a substrate, which is preferably a laminated substrate. The circuitry for the different modules is initially formed on the single meta-module. Each module will have one or more component areas in which the circuitry is formed. A metallic structure is formed on or in the substrate for each component area to be shielded. A single body, such as an overmold body, is then formed over all of the modules on the meta-module. At least a portion of the metallic structure for each component area to be shielded is then exposed through the body by a cutting, drilling, or like operation. Next, an electromagnetic shield material is applied to the exterior surface of the body of each of the component areas to be shielded and in contact with the exposed portion of the metallic structures.
Abstract:
In one embodiment, a meta-module having circuitry for two or more modules is formed on a substrate, which is preferably a laminated substrate. The circuitry for the different modules is initially formed on the single meta-module. Each module will have one or more component areas in which the circuitry is formed. A metallic structure is formed on or in the substrate for each component area to be shielded. A single body, such as an overmold body, is then formed over all of the modules on the meta-module. At least a portion of the metallic structure for each component area to be shielded is then exposed through the body by a cutting, drilling, or like operation. Next, an electromagnetic shield material is applied to the exterior surface of the body of each of the component areas to be shielded and in contact with the exposed portion of the metallic structures.
Abstract:
The present disclosure relates to enhancing the thermal performance of encapsulated flip chip dies. According to an exemplary process, a plurality of flip chip dies are attached on a top surface of a carrier, and a first mold compound is applied over the top surface of the carrier to encapsulate the plurality of flip chip dies. The first mold compound is thinned down to expose a substrate of each flip chip die and the substrate of each flip chip die is then substantially etched away to provide an etched flip chip die that has an exposed surface at the bottom of a cavity. Next, a second mold compound with high thermal conductivity is applied to substantially fill each cavity and the top surface of the second mold compound is planarized. Finally, the encapsulated etched flip chip dies can be marked, singulated, and tested as a module.
Abstract:
The present disclosure relates to enhancing the thermal performance of encapsulated flip chip dies. According to an exemplary process, a plurality of flip chip dies are attached on a top surface of a carrier, and a first mold compound is applied over the top surface of the carrier to encapsulate the plurality of flip chip dies. The first mold compound is thinned down to expose a substrate of each flip chip die and the substrate of each flip chip die is then substantially etched away to provide an etched flip chip die that has an exposed surface at the bottom of a cavity. Next, a second mold compound with high thermal conductivity is applied to substantially fill each cavity and the top surface of the second mold compound is planarized. Finally, the encapsulated etched flip chip dies can be marked, singulated, and tested as a module.
Abstract:
In one embodiment, a meta-module having circuitry for two or more modules is formed on a substrate, which is preferably a laminated substrate. The circuitry for the different modules is initially formed on the single meta-module. Each module will have one or more component areas in which the circuitry is formed. A metallic structure is formed on or in the substrate for each component area to be shielded. A single body, such as an overmold body, is then formed over all of the modules on the meta-module. At least a conductive vertical interconnect access structure (vias) associated with each component area to be shielded is then exposed through the body by a cutting, drilling, or similar operation. Next, an electromagnetic shield material is applied to the exterior surface of the body of each of the component areas to be shielded and in contact with the exposed conductive vias.
Abstract:
In one embodiment, a meta-module having circuitry for two or more modules is formed on a substrate, which is preferably a laminated substrate. The circuitry for the different modules is initially formed on the single meta-module. Each module will have one or more component areas in which the circuitry is formed. A metallic structure is formed on or in the substrate for each component area to be shielded. A single body, such as an overmold body, is then formed over all of the modules on the meta-module. At least a conductive vertical interconnect access structure (vias) associated with each component area to be shielded is then exposed through the body by a cutting, drilling, or similar operation. Next, an electromagnetic shield material is applied to the exterior surface of the body of each of the component areas to be shielded and in contact with the exposed conductive vias.
Abstract:
A semiconductor die, which includes a first semiconductor device, a first passivation layer, and a first interconnect bump, is disclosed. The first passivation layer is over the first semiconductor device, which includes a first group of device fingers. The first interconnect bump is thermally and electrically connected to each of the first group of device fingers. Additionally, the first interconnect bump protrudes through a first opening in the first passivation layer.
Abstract:
The present disclosure relates to enhancing the thermal performance of encapsulated flip chip dies. According to an exemplary process, a plurality of flip chip dies are attached on a top surface of a carrier, and a first mold compound is applied over the top surface of the carrier to encapsulate the plurality of flip chip dies. The first mold compound is thinned down to expose a substrate of each flip chip die and the substrate of each flip chip die is then substantially etched away to provide an etched flip chip die that has an exposed surface at the bottom of a cavity. Next, a second mold compound with high thermal conductivity is applied to substantially fill each cavity and the top surface of the second mold compound is planarized. Finally, the encapsulated etched flip chip dies can be marked, singulated, and tested as a module.