Abstract:
A method to provide a transistor or memory cell structure. The method comprises: providing a substrate including a lower Si substrate and an insulating layer on the substrate; providing a first projection extending above the insulating layer, the first projection including an Si material and a Sil-xGex material; and exposing the first projection to preferential oxidation to yield a second projection including a center region comprising Ge/Sil-yGey and a covering region comprising SiO2 and enclosing the center region.
Abstract:
A method to provide a transistor or memory cell structure. The method comprises: providing a substrate including a lower Si substrate and an insulating layer on the substrate; providing a first projection extending above the insulating layer, the first projection including an Si material and a Si1-xGex material; and exposing the first projection to preferential oxidation to yield a second projection including a center region comprising Ge/Si1-yGey and a covering region comprising SiO2 and enclosing the center region.
Abstract:
An apparatus including a device including a channel material having a first lattice structure on a well of a well material having a matched lattice structure in a buffer material having a second lattice structure that is different than the first lattice structure. A method including forming a trench in a buffer material; forming an n-type well material in the trench, the n-type well material having a lattice structure that is different than a lattice structure of the buffer material; and forming an n-type transistor. A system including a computer including a processor including complimentary metal oxide semiconductor circuitry including an n-type transistor including a channel material, the channel material having a first lattice structure on a well disposed in a buffer material having a second lattice structure that is different than the first lattice structure, the n-type transistor coupled to a p-type transistor.
Abstract:
A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric.
Abstract:
A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
Abstract:
A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
Abstract:
The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming isolation structures in strained semiconductor bodies of non-planar transistors while maintaining strain in the semiconductor bodies.
Abstract:
A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
Abstract:
Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
Abstract:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.