Abstract:
A material removal process referred to as spalling is used to provide flexible and stretchable sensors that can be used for healthcare monitoring, bio-medical devices, wearable electronic devices, artificial skin, large area sensing, etc. The flexible and stretchable sensors of the present application have high sensitivity that is comparable to that of a bulk silicon sensor. The flexible and stretchable sensors comprise single crystalline spring-like structures that couple various resistor structures together.
Abstract:
Embodiments of the invention include a method of fabrication of a semiconductor structure. The method of fabrication includes: Forming a trench in a first dielectric material down to a first conductive material of a bottom gate. A sidewall of the trench contacts a top surface of the first conductive material. Depositing a second conductive material on the sidewall of the trench, which forms an electrical connection with the first conductive material. Depositing a second dielectric material a in the trench, and on the second conductive material. Depositing a gate dielectric material on the second conductive material and the dielectric materials. Forming a channel material on the gate dielectric material. Depositing another conductive material on the channel material and portions of the gate dielectric material to form a source terminal and a drain terminal.
Abstract:
Embodiments of the invention include a method of fabrication and a semiconductor structure. The method of fabrication includes depositing a first dielectric material on a substrate, and forming a bottom gate including filling a first opening in the first dielectric layer with a first conductive material. Next, depositing a second dielectric material, and forming a trench in the second dielectric material down to the first conductive material. Next, depositing a second conductive material on the sidewall of the trench forming an electrical connection between the first conductive material and the second conductive material, depositing a third dielectric material in the trench, and removing excess material not in the trench. Next, depositing a gate dielectric layer, and forming a channel layer of carbon nanotubes on the gate dielectric layer. Lastly, depositing a third conductive material on the channel layer forming source and drain terminals.
Abstract:
Techniques for forming metal contacts to LMDC-based devices are provided. In one aspect, a method of forming a metal contact to a LMDC semiconductor material includes the steps of: depositing a contact metal onto the LMDC semiconductor material; and annealing the LMDC semiconductor material and the contact metal under conditions sufficient to react the contact metal with the LMDC semiconductor material and thereby form a buffer layer as an interface between the contact metal and the LMDC semiconductor material that compositionally is a transition from the LMDC semiconductor material to the contact metal and connects the LMDC semiconductor material and the contact metal by covalent bonds. The LMDC semiconductor material can be a material having a formula MX2, wherein M is a metal, and X is a chalcogen. A LMDC-based device and techniques for forming the device are also provided.
Abstract:
Sensors, processes for manufacturing the sensors, and processes of detecting a target molecule with the sensor generally includes a substrate including a channel and first and second electrodes electrically connected to the channel, wherein the channel includes a monolayer of surface functionalized graphene or surface functionalized carbon nanotubes, wherein the surface functionalized graphene or surface functionalized carbon nanotubes include an imidazolidone compound.
Abstract:
A device and method for fabrication includes providing a first substrate assembly including a first substrate and a first metal layer formed on the first substrate and a second substrate assembly including a second substrate and a second metal layer formed on the second substrate. The first metal layer is joined to the second metal layer using a cold welding process wherein one of the first substrate and the second substrate includes a semiconductor channel layer for forming a transistor device.
Abstract:
A device and method for device fabrication includes forming a buried gate electrode in a dielectric substrate and patterning a stack that includes a high dielectric constant layer, a carbon-based semi-conductive layer and a protection layer over the buried gate electrode. An isolation dielectric layer formed over the stack is opened to define recesses in regions adjacent to the stack. The recesses are etched to form cavities and remove a portion of the high dielectric constant layer to expose the carbon-based semi-conductive layer on opposite sides of the buried gate electrode. A conductive material is deposited in the cavities to form self-aligned source and drain regions.
Abstract:
Stacked transistor devices include a lower channel layer formed on a substrate; a pair of vertically aligned source regions formed over the lower channel layer, where the pair of source regions are separated by an insulator; a pair of vertically aligned drain regions formed on the lower channel layer, where the pair of drain regions are separated by an insulator; a pair of vertically aligned gate regions formed on the lower gate dielectric layer; and an upper channel layer formed over the source regions, drain regions, and gate regions.
Abstract:
A technique is provided for base recognition in an integrated device is provided. A target molecule is driven into a nanopore of the integrated device. The integrated device includes a nanowire separated into a left nanowire part and a right nanowire part to form a nanogap in between, a source pad connected to the right nanowire part, a drain pad connected to the left nanowire part, and the nanopore. The source pad, the drain pad, the right nanowire part, the left nanowire part, and the nanogap together form a transistor. The nanogap is part of the nanopore. A transistor current is measured while a single base of the target molecule is in the nanogap of the nanopore, and the single base affects the transistor current. An identity of the single base is determined according to a change in the transistor current.
Abstract:
An on-chip decoupling capacitor is disclosed. One or more carbon nanotubes are coupled to a first electrode of the capacitor. A dielectric skin is formed on the one or more carbon nanotubes. A metal coating is formed on the dielectric skin. The dielectric skin is configured to electrically isolate the one or more carbon nanotubes from the metal coating.