Abstract:
The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming isolation structures in strained semiconductor bodies of non-planar transistors while maintaining strain in the semiconductor bodies.
Abstract:
In one embodiment, the present invention includes an apparatus having a substrate, a buried oxide layer formed on the substrate, a silicon on insulator (SOI) core formed on the buried oxide layer, a compressive strained quantum well (QW) layer wrapped around the SOI core, and a tensile strained silicon layer wrapped around the QW layer. Other embodiments are described and claimed.
Abstract:
A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
Abstract:
Double quantum well structures for transistors are generally described. In one example, an apparatus includes a semiconductor substrate, one or more buffer layers coupled to the semiconductor substrate, a first barrier layer coupled to the one or more buffer layers, a first quantum well channel coupled with the first barrier layer wherein the first quantum well channel includes a group III-V semiconductor material or a group II-VI semiconductor material, or combinations thereof, a second barrier layer coupled to the first quantum well channel, and a second quantum well channel coupled to the barrier layer wherein the second quantum well channel includes a group III-V semiconductor material or a group II-VI semiconductor material, or combinations thereof.
Abstract:
Techniques and structures for increasing body dopant uniformity in multi-gate transistor devices are generally described. In one example, an electronic device includes a semiconductor substrate, a multi-gate fin coupled with the semiconductor substrate, the multi-gate fin comprising a source region, a drain region, and a gate region wherein the gate region is disposed between the source region and the drain region, the gate region being body-doped after a sacrificial gate structure is removed from the multi-gate fin and before a subsequent gate structure is formed, a dielectric material coupled with the source region and the drain region of the multi-gate fin, and the subsequent gate structure coupled to the gate region of the multi-gate fin.
Abstract:
An embedded memory cell includes a semiconducting substrate (110), a transistor (120) having a source/drain region (121) at least partially embedded in the semiconducting substrate, and a capacitor (130) at least partially embedded in the semiconducting substrate. The capacitor includes a first electrode (131) and a second electrode (132) that are electrically isolated from each other by a first electrically insulating material (133). The first electrode is electrically connected to the semiconducting substrate and the second electrode is electrically connected to the source/drain region of the transistor.
Abstract:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
Abstract:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
Abstract:
In one embodiment, the present invention includes an apparatus having a substrate, a buried oxide layer formed on the substrate, a silicon on insulator (SOI) core formed on the buried oxide layer, a compressive strained quantum well (QW) layer wrapped around the SOI core, and a tensile strained silicon layer wrapped around the QW layer. Other embodiments are described and claimed.
Abstract:
A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.