摘要:
A process for PECVD of selected material films on a substrate comprising the steps of placing a substrate in a PECVD chamber and maintaining the chamber under vacuum pressure while introducing a precursor gas, a reactant gas, and an ionization enhancer agent into the chamber. A plasma is generated from the gases within the chamber. The energy generating the plasma causes the formation of charged species. The resulting charged species of the ionization enhancer agent assists in the formation of chemically reactive species of at least the precursor.
摘要:
A cap layer that enables a photopatternable, spin-on material to be used in the formation of semiconductor device structures at wavelengths that were previously unusable. The photopatternable, spin-on material is applied as a layer to a semiconductor substrate. The cap layer and a photoresist layer are each formed over the photopatternable layer. The cap layer absorbs or reflects radiation and protects the photopatternable layer from a first wavelength of radiation used in patterning the photoresist layer. The photopatternable, spin-on material is convertible to a silicon dioxide-based material upon exposure to a second wavelength of radiation.
摘要:
A capacitor fabrication method may include forming a first capacitor electrode over a substrate and atomic layer depositing an insulative barrier layer to oxygen diffusion over the first electrode. A capacitor dielectric layer may be formed over the first electrode and a second capacitor electrode may be formed over the dielectric layer. The barrier layer may include Al2O3. A capacitor fabrication method may also include forming a first capacitor electrode over a substrate, chemisorbing a layer of a first precursor at least one monolayer thick over the first electrode, and chemisorbing a layer of a second precursor at least one monolayer thick on the first precursor layer. A chemisorption product of the first and second precursors may be comprised by a layer of an insulative barrier material. The first precursor may include H2O and the second precursor may include trimethyl aluminum.
摘要:
The disclosed embodiments relate to a vertical tunneling transistor that may include a channel disposed on a substrate. A quantum dot may be disposed so that an axis through the channel and the quantum dot is substantially perpendicular to the substrate. A gate may be disposed so that an axis through the channel, the quantum dot and the gate is substantially perpendicular to the substrate.
摘要:
A storage cell capacitor and a method for forming the storage cell capacitor having a storage node electrode including a barrier layer interposed between a conductive plug and an oxidation resistant layer. A layer of titanium silicide is fabricated to lie between the conductive plug and the oxidation resistant layer. An insulative layer protects the sidewalls of the barrier layer during the deposition and anneal of a dielectric layer having a high dielectric constant.
摘要:
A method and system providing a high flux of point of use activated reactive species for semiconductor processing wherein a workpiece is exposed to a gaseous atmosphere containing a transmission gas that is substantially nonattenuating to preselected wavelengths of electromagnetic radiation. A laminar flow of a gaseous constituent is also provided over a substantially planar surface of the workpiece wherein a beam of the electromagnetic radiation is directed into the gaseous atmosphere such that it converges in the laminar flow to provide maximum beam energy in close proximity to the surface of the workpiece, but spaced a finite distance therefrom. The gaseous constituent is dissociated by the beam producing an activated reactive species that reacts with the surface of the workpiece.
摘要:
A contact structure is provided incorporating an amorphous titanium nitride barrier layer formed via low-pressure chemical vapor deposition (LPCVD) utilizing tetrakis-dialkylamido-titanium, Ti(NMe2)4, as the precursor. The contact structure is fabricated by etching a contact opening through a dielectric layer down to a diffusion region to which electrical contact is to be made. Titanium metal is deposited over the surface of the wafer so that the exposed surface of the diffusion region is completely covered by a layer of the metal. At least a portion of the titanium metal layer is eventually converted to titanium silicide, thus providing an excellent conductive interface at the surface of the diffusion region. A titanium nitride barrier layer is then deposited using the LPCVD process, coating the walls and floor of the contact opening. Chemical vapor deposition of polycrystalline silicon or of a metal follows.
摘要:
A method of forming a crystalline phase material includes, a) providing a stress inducing material within or operatively adjacent a crystalline material of a first crystalline phase; and b) annealing the crystalline material of the first crystalline phase under conditions effective to transform it to a second crystalline phase. The stress inducing material preferably induces compressive stress within the first crystalline phase during the anneal to the second crystalline phase to lower the required activation energy to produce a more dense second crystalline phase. Example compressive stress inducing layers include SiO2 and Si3N4, while example stress inducing materials for providing into layers are Ge, W and Co. Where the compressive stress inducing material is provided on the same side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is less than the first phase crystalline material. Where the compressive stress inducing material is provided on the opposite side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is greater than the first phase crystalline material. Example and preferred crystalline phase materials having two phases are refractory metal silicides, such as TiSix.
摘要翻译:形成结晶相材料的方法包括:a)在第一结晶相的结晶材料内部或在其中邻近的第一结晶相中提供应力诱导材料; 和b)在有效地将其转变成第二结晶相的条件下退火第一结晶相的结晶材料。 应力诱导材料优选在与第二结晶相退火期间在第一结晶相内诱导压应力,以降低所需的活化能以产生更致密的第二结晶相。 示例性压缩应力诱导层包括SiO 2和Si 3 N 4,而用于提供层的应力诱导材料是Ge,W和Co 在压应力诱导材料设置在其上提供结晶相材料的晶片的相同侧上时,其被设置为具有小于第一相结晶材料的热膨胀系数。 在压应力诱导材料设置在提供结晶相材料的晶片的相对侧上的情况下,其被设置为具有大于第一相结晶材料的热膨胀系数。 具有两相的实例和优选结晶相材料是难熔金属硅化物,例如TiSi x x。
摘要:
A substrate is positioned within a deposition chamber. At least two gaseous precursors are fed to the chamber which collectively comprise silicon, an oxidizer comprising oxygen and dopant which become part of the deposited doped silicon dioxide. The feeding is over at least two different time periods and under conditions effective to deposit a doped silicon dioxide layer on the substrate. The time periods and conditions are characterized by some period of time when one of said gaseous precursors comprising said dopant is flowed to the chamber in the substantial absence of flowing any of said oxidizer precursor. In one implementation, the time periods and conditions are effective to at least initially deposit a greater quantity of doped silicon dioxide within at least some gaps on the substrate as compared to any doped silicon dioxide deposited atop substrate structure which define said gaps.
摘要:
A technique for forming a high surface area electrode or storage node for a capacitor and devices formed thereby, including depositing a first layer of conductive material on a substrate, such that a discontinuous layer is formed. A second conductive material layer is deposited over the discontinuous first conductive material layer, such that the second conductive material layer grows or accumulates on the discontinuous first conductive material layer at a faster rate than on the exposed areas of the substrate in the discontinuous first conductive material layer to form a rough conductive material layer.