Abstract:
A semiconductor structure includes a substrate, and a replacement metal gate (RMG) structure is attached to the substrate. The RMG structure includes a lower portion and an upper tapered portion. A source junction is disposed on the substrate and attached to a first low-k spacer portion. A drain junction is disposed on the substrate and attached to a second low-k spacer portion. A first oxide layer is disposed on the source junction, and attached to the first low-k spacer portion. A second oxide layer is disposed on the drain junction, and attached to the second low-k spacer portion. A cap layer is disposed on a top surface layer of the RMG structure and attached to the first oxide layer and the second oxide layer.
Abstract:
Semiconductor devices and methods for making the same includes conformally forming a first spacer on a plurality of fins. A second spacer is conformally formed on the first spacer, the second spacer being formed from a different material from the first spacer. The plurality of fins are etched below a bottom level of the first spacer to form a fin cavity. Material from the first spacer is removed to expand the fin cavity. Fin material is grown directly on the etched plurality of fins to fill the fin cavity.
Abstract:
A semiconductor structure including a semiconductor material portion located on a substrate and extending along a lengthwise direction, a gate stack overlying a portion of the semiconductor material portion, and a first low-k spacer portion and a second low-k spacer portion abutting the gate stack and spaced from each other by the gate stack along said lengthwise direction. The first low-k spacer portion and the second low-k spacer portion each part of a recessed dummy gate structure on the substrate and a sacrificial spacer with gaps around and above a portion of the dummy gate stack. The gaps are filled in with the first low-k spacer portion and the second low-k spacer portion.
Abstract:
A semiconductor structure formed based on forming a dummy gate stack on a substrate including a sacrificial spacer on the peripheral of the dummy gate stack. The dummy gate stack is partially recessed. The sacrificial spacer is etched down to the partially recessed dummy gate stack. Remaining portions of the sacrificial spacer are etched leaving gaps around and above a remaining portion of the dummy gate stack. A first low-k spacer portion and a second low-k spacer portion are formed to fill gaps around the dummy gate stack and extend vertically along a sidewall of a dummy gate cavity. The first low-k spacer portion and the second low-k spacer portion are etched. A poly pull process is performed on the dummy gate stack. A replacement metal gate (RMG) structure is formed with the first low-k spacer portion and the second low-k spacer portion.
Abstract:
A semiconductor structure formed based on forming a dummy gate stack on a substrate including a sacrificial spacer on the peripheral of the dummy gate stack. The dummy gate stack is partially recessed. The sacrificial spacer is etched down to the partially recessed dummy gate stack. Remaining portions of the sacrificial spacer are etched leaving gaps around and above a remaining portion of the dummy gate stack. A first low-k spacer portion and a second low-k spacer portion are formed to fill gaps around the dummy gate stack and extend vertically along a sidewall of a dummy gate cavity. The first low-k spacer portion and the second low-k spacer portion are etched. A poly pull process is performed on the dummy gate stack. A replacement metal gate (RMG) structure is formed with the first low-k spacer portion and the second low-k spacer portion.
Abstract:
Embodiments of the present invention provide a method of forming semiconductor structure. The method includes forming a set of device features on top of a substrate; forming a first dielectric layer directly on top of the set of device features and on top of the substrate, thereby creating a height profile of the first dielectric layer measured from a top surface of the substrate, the height profile being associated with a pattern of an insulating structure that fully surrounds the set of device features; and forming a second dielectric layer in areas that are defined by the pattern to create the insulating structure. A structure formed by the method is also disclosed.
Abstract:
Embodiments of the present invention may include methods of incorporating an embedded etch barrier layer into the replacement metal gate layer of field effect transistors (FETs) having replacement metal gates, as well as the structure formed thereby. The embedded etch stop layer may be composed of embedded dopant atoms and may be formed using ion implantation. The embedded etch stop layer may make the removal of replacement metal gate layers easier and more controllable, providing horizontal surfaces and determined depths to serve as the base for gate cap formation. The gate cap may insulate the gate from adjacent self-aligned electrical contacts.
Abstract:
An MIS contact structure comprises a layer of semiconductor material, a layer of insulating material having a contact opening formed therein, a layer of contact insulating material having substantially vertically oriented portions and a substantially horizontally oriented portion, the vertically oriented portions of the layer of contact insulating material contacting a portion, but not all, of the sidewalls of the contact opening and the horizontally oriented portion of the layer of contact insulating material contacting the semiconductor layer. A conductive material is positioned on the layer of contact insulating material within the contact opening, the conductive material layer having vertically oriented portions and a horizontally oriented portion and a conductive contact positioned in the contact opening that contacts the uppermost surfaces of the conductive material layer and the layer of contact insulating material.
Abstract:
A method for fabricating a field effect transistor device comprises forming a fin on a substrate, forming a first dummy gate stack and a second dummy gate stack over the fin, forming spacers adjacent to the fin, the first dummy gate stack, and the second dummy gate stack, etching to remove portions of the fin and form a first cavity partially defined by the spacers, depositing an insulator material in the first cavity, patterning a mask over the first dummy gate stack and portions of the fin, etching to remove exposed portions of the insulator material, and epitaxially growing a first semiconductor material on exposed portions of the fin.
Abstract:
One method disclosed herein includes forming at least one sacrificial sidewall spacer adjacent a sacrificial gate structure that is formed above a semiconducting substrate, removing at least a portion of the sacrificial gate structure to thereby define a gate cavity that is laterally defined by the sacrificial spacer, forming a replacement gate structure in the gate cavity, removing the sacrificial spacer to thereby define a spacer cavity adjacent the replacement gate structure, and forming a low-k spacer in the spacer cavity. A novel device disclosed herein includes a gate structure positioned above a semiconducting substrate, wherein the gate insulation layer has two upstanding portions that are substantially vertically oriented relative to an upper surface of the substrate. The device further includes a low-k sidewall spacer positioned adjacent each of the vertically oriented upstanding portions of the gate insulation layer.