摘要:
This invention provides a method and solution for the electroless deposition of Co(P) with a designed coercivity via the programmed addition of supporting electrolytes comprising such sulfur containing compounds as sulfamic acid, potassium sulfate or sodium sulfate to a solution having a source of cobalt ions, a source of citrate ions, a buffering compound to stabilize the pH of the solution, a source of hypophosphite ions and sufficient hydroxide anions to obtain a pH of between about 7 and 9. The magnetized Co(P) material is useful in, for example, rigid magnetic storage disks, hard bias layers for MR thin film heads and magnetic detector tags.
摘要:
A novel air-gap-containing interconnect wiring structure is described incorporating a solid low-k dielectric in the via levels, and a composite solid plus air-gap dielectric in the wiring levels. Also provided is a method for forming such an interconnect structure. The method is readily scalable to interconnect structures containing multiple wiring levels, and is compatible with Dual Damascene Back End of the Line (BEOL) processing.
摘要:
A liquid crystal display cell having liquid crystal molecules positioned in a vertical or a substantially vertical alignment is provided. The liquid crystal display cell includes at least two substantially homogeneous fluorinated alignment layers disposed on transparent electrodes; a liquid crystal layer of liquid crystal molecules disposed between the alignment layers; and, a means of applying voltage across the transparent electrodes. Methods for forming these liquid crystal display cells are also provided.
摘要:
A micro electromechanical switch has a guidepost formed upon a substrate. A signal transmission line is formed on the substrate, with the signal transmission line having a gap and forming an open circuit. The switch further includes a switch body having a via opening formed therein, with the switch body being movably disposed along an length defined by the guide post. The guidepost is partially surrounded by the via opening.
摘要:
Disclosed are a method and a system for processing a semiconductor structure of the type including a substrate, a dielectric layer, and a TaN—Ta liner on the dielectric layer. The method comprises the step of using XeF2 to remove at least a portion of the TaN—Ta liner completely to the dielectric layer. In the preferred embodiments, the present invention uses XeF2 selective gas phase etching as alternatives to Ta—TaN Chemical Mechanical Polishing (CMP) as a basic “liner removal process” and as a “selective cap plating base removal process.” In this first use, XeF2 is used to remove the metal liner, TaN—Ta, after copper CMP. In the second use, the XeF2 etch is used to selectively remove a plating base (TaN—Ta) that was used to form a metal cap layer over the copper conductor.
摘要:
A Negative Thermal Expansion system (NTEs) device for TCE compensation or CTE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging. One aspect of the present invention provides a method for fabricating micromachine devices that have negative thermal expansion coefficients that can be made into a composite for manipulation of the TCE of the material. These devices and composites made with these devices are in the categories of materials called “smart materials” or “responsive materials.” Another aspect of the present invention provides microdevices comprised of dual opposed bilayers of material where the two bilayers are attached to one another at the peripheral edges only, and where the bilayers themselves are at a minimum stress conditions at a reference temperature defined by the temperature at which the bilayers are formed. These devices have the technologically useful property of volumetrically expanding upon lowering of the device temperature below the reference or processing temperature.
摘要:
A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.