Abstract:
A stacked wafer level semiconductor package module includes a semiconductor chip module including first and second semiconductor chips each having a rectangular shape. The first semiconductor chip has first pads disposed along a first short side of a lower surface thereof. The second semiconductor chip has second pads disposed along a first short side of a lower surface thereof. The first and second semiconductor chips are stacked so as to expose the first pad and the second pad on one side of the stacked first and second semiconductor chips. The package also includes a substrate having a first connection pad facing the first pad and a second connection pad facing the second pad. The package also includes a first connection member for connecting the first pad to the first connection pad, and a second connection member for connecting the second pad to the second connection pad.
Abstract:
A stack package includes a base substrate having connection pads on an upper surface thereof and ball lands on a lower surface thereof; at least two semiconductor chps stacked by intervening a spacer on the base substrate and defined with through-holes for electrical connections on positions corresponding to the connection pads; electrical connection members for electrically connecting the stacked semiconductor chips and the base substrate to each other; a pair of heat sinks formed such that they contact the side surfaces of the stacked semiconductor chips and extend in a direction perpendicular to the base substrate; and outside connection terminals attached to the ball lands located on the lower surface of the base substrate.
Abstract:
A method for manufacturing a semiconductor package includes forming a groove in the portion outside of the bonding pad of a semiconductor chip provided with the bonding pad on an upper surface thereof; forming an insulation layer on the side wall of the groove; forming a metal layer over the semiconductor chip so as to fill the groove formed with the insulation layer; etching the metal layer to simultaneously form a through silicon via for filling the groove and a distribution layer for connecting the through silicon via and the bonding pad; and removing a rear surface of the semiconductor chip such that the lower surface of the through silicon via protrudes from the semiconductor chip.
Abstract:
Manufacturing a wafer level stack package includes the steps of back-grinding a lower surface of a wafer including a plurality of first semiconductor chips. A support member is attached to a lower surface of the back-grinded wafer. One or more second semiconductor chips are stacked on the respective first semiconductor chips of the back-grinded wafer. First through-electrodes are formed to electrically connect the stacked first semiconductor chips and second semiconductor chips. Third semiconductor chips are attached to uppermost ones of the stacked second semiconductor chips, and the third semiconductor chips have second through-electrodes which are electrically connected to the first through-electrodes and re-distribution lines which are connected to the second through-electrodes. Outside connection terminals are attached to the re-distribution lines of the third semiconductor chips. The first semiconductor chips of a wafer level on which the second and third semiconductor chips are stacked are sawed to for semiconductor packages at a chip level.
Abstract:
A wafer level chip scale package having an enhanced heat exchange efficiency with an EMF shield is presented. The wafer level chip scale package includes a semiconductor chip, an insulation layer, and a metal plate. The semiconductor chip has a plurality of bonding pads on an upper face thereof. The insulation layer is disposed over the upper face of the semiconductor chip and has openings that expose some portions of the bonding pads. The metal plate covers an upper face of the insulation layer and side faces of the semiconductor chip in which the metal plate is electrically insulated from the bonding pads.
Abstract:
A semiconductor chip with a chip selection structure suitable for a stacked semiconductor chip includes a semiconductor chip body and a chip selection structure. The chip selection structure includes a chip selection pad disposed over the semiconductor chip body, a main through electrode electrically connected to the chip selection pad, and a sub through electrode interposed between the main through electrode and the chip selection pad. A plurality of the semiconductor chips, each having the same chip selection structure, can be stacked by offsetting the stacked semiconductor chips.
Abstract:
A method for manufacturing a semiconductor package includes forming a groove in the portion outside of the bonding pad of a semiconductor chip provided with the bonding pad on an upper surface thereof; forming an insulation layer on the side wall of the groove; forming a metal layer over the semiconductor chip so as to fill the groove formed with the insulation layer; etching the metal layer to simultaneously form a through silicon via for filling the groove and a distribution layer for connecting the through silicon via and the bonding pad; and removing a rear surface of the semiconductor chip such that the lower surface of the through silicon via protrudes from the semiconductor chip.