Abstract:
Disclosed is a carbon-based composite particle for an electron emission source comprising: a particle of a material selected from the group consisting of metals, oxides, and ceramic materials; and a carbon-based material such as a carbon nanotube which is partially buried inside of the particle and which partially protrudes from the surface of the particle.
Abstract:
A spacer covering a sidewall of a contact plug includes a relatively more damaged first portion and a relatively less damaged second portion. An interface of the first and second portions of the spacer is spaced apart from a metal silicide layer of the contact plug. Thus reliability of the semiconductor device may be improved. Related fabrication methods are also described.
Abstract:
A spacer covering a sidewall of a contact plug includes a relatively more damaged first portion and a relatively less damaged second portion. An interface of the first and second portions of the spacer is spaced apart from a metal silicide layer of the contact plug. Thus reliability of the semiconductor device may be improved. Related fabrication methods are also described.
Abstract:
A display substrate is provided. The display substrate includes a gate interconnection disposed on an insulating substrate, an oxide semiconductor pattern disposed on the gate interconnection and including an oxide semiconductor, and a data interconnection disposed on the oxide semiconductor pattern to interconnect the gate interconnection. The oxide semiconductor pattern includes a first oxide semiconductor pattern having a first oxide and a first element and a second oxide semiconductor pattern having a second oxide.
Abstract:
An example semiconductor package with reduced solder voiding is described, which has a leadframe having an I/O pad and a thermal pad, a fabricated semiconductor die having a bond pad, where the fabricated semiconductor die is attached to a top surface of the thermal pad, and a wire bond connecting the bond pad to the I/O pad, where a bottom surface of the thermal pad has channels.
Abstract:
Disclosed herein is a reflow inspection system. The reflow inspection system according to an embodiment of the present invention includes an oven, a stage on which a reflow inspection target is placed inside the oven, and which includes a temperature detecting sensor for detecting a temperature of the reflow inspection target formed on one side thereof; a light source unit formed on one side of the oven and irradiating the reflow inspection target with light, an imaging unit sucking smoke generated in the reflow inspection target, and obtaining image information of the reflow inspection target to thereby transmit the obtained image information to the outside, an image processing unit processing the image information obtained in the imaging unit, and a control unit connected to the stage, the temperature detecting sensor, and the image processing unit to perform control of a reflow inspection process.
Abstract:
A barrier layer can be attached in a semiconductor package to one or more sensitive devices. The barrier layer can be used to obstruct tampering by a malicious agent attempting to access sensitive information on the sensitive device. The barrier layer can cause the sensitive device to become inoperable if physically tampered. Additional other aspects of the protective packaging provide protection against x-ray and thermal probing as well as chemical and electrical tampering attempts.
Abstract:
The present invention relates to a positive active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same. More particularly, the present invention relates to a positive active material for a rechargeable lithium battery including a compound that can reversibly intercalate/deintercalate lithium and a lithium metal phosphate produced through binding with lithium of the compoound, the lithium metal phosphate existing from the surface of the compound to a predetermined depth, a method of preparing the positive active material, and a rechargeable lithium battery having the positive active material. The positive active material can accomplish excellent cycle-life characteristic and also, suppress battery swelling at a high temperature.
Abstract:
A light-emitting diode (“LED”) package includes a light-emitting chip, a case, first and second lead frames and a dummy lead frame. The light-emitting chip generates light. The case includes a bottom portion and a plurality of sidewalls, wherein the light-emitting chip is positioned in the case. The first and second lead frames are spaced apart from each other and are electrically connected to the light-emitting chip. The dummy lead frame is spaced apart from the light-emitting chip and the first and second lead frames, and is electrically isolated from the light-emitting chip and the first and second lead frames. The dummy lead frame is used as a wiring for connecting the LED package to another LED package, so that the number of signal wirings or a length of a signal wiring may be decreased, and a manufacturing cost of the LED package may be reduced.
Abstract:
An example semiconductor package with reduced solder voiding is described, which has a leadframe having an I/O pad and a thermal pad, a fabricated semiconductor die having a bond pad, where the fabricated semiconductor die is attached to a top surface of the thermal pad, and a wire bond connecting the bond pad to the I/O pad, where a bottom surface of the thermal pad has channels.