摘要:
Wafer level packaging (WLP) packages semiconductor dies onto a wafer structure. After the wafer level package is complete, individual packages are obtained by singulating the wafer level package. The resulting package has a small form factor suitable for miniaturization. Unfortunately conventional WLP have poor heat dissipation. An interposer with a thermal pad can be attached to the semiconductor die to facilitate improved heat dissipation. In one embodiment, the interposer can also provide a wafer substrate for the wafer level package. Furthermore, the interposer can be constructed using well established and inexpensive processes. The thermal pad attached to the interposer can be coupled to the ground plane of a system where heat drawn from the semiconductor die can be dissipated.
摘要:
There is provided a system and method for an externally wire bondable chip scale package in a system-in-package module. There is provided a system-in-package module comprising a substrate including a first contact pad disposed thereon, a packaged device attached to the substrate, wherein an electrode of the packaged device is wirebonded to the first contact pad, and an unpackaged device, wherein an electrode of the unpackaged device is coupled to the substrate. By flipping the packaged device within the module and utilizing wire bondable finishes on the packaged device, an externally wire bondable chip scale package may be provided. The structure of the disclosed system-in-package module provides several advantages over conventional designs including increased yields, a single assembly line, facilitated die substitution, reduced heat stress, higher package density, and a simplified single package structure for reduced fabrication time and cost.
摘要:
There is provided a system and method for unpackaged and packaged IC stacked in a system-in-package module. There is provided a system-in-package module comprising a substrate including a first contact pad and a second contact pad disposed thereon, a packaged device disposed on the substrate, and an unpackaged device stacked atop the packaged device, wherein a first electrode of the packaged device is electrically and mechanically coupled to the first contact pad, and wherein a second electrode of the unpackaged device is electrically coupled to the second contact pad. The structure of the disclosed system-in-package module provides several advantages over conventional designs including increased yields, facilitated die substitution, enhanced thermal and grounding performance through direct connect vias, stacking of wider devices without a spacer, and a simplified single package structure for reduced fabrication time and cost.
摘要:
There is provided a system-in-package (SiP) module that comprises a substrate, a semiconductor die attached to the substrate, a mold compound which encapsulates the semiconductor die, and an LED (light emitting diode) component attached to the substrate, where the LED component is at least partially located within the SiP module, such that the LED component can emit lights to outside of the SiP module.
摘要:
There is provided a system and method for a spot plated leadframe and an IC bond pad via array design for copper wire. There is provided a semiconductor package comprising a leadframe having a pre-plated finish and a spot plating on said pre-plated finish, a semiconductor die including a bond pad on a top surface thereof, and a copper wire bonded to said spot plating and to said bond pad. Optionally, a novel corner via array design may be provided under the bond pad for improved package performance while maintaining the integrity of the copper wire bond. The semiconductor package may provide several advantages including high MSL ratings, simplified assembly cycles, avoidance of tin whisker issues, and low cost compared to conventional packages using gold wire bonds.
摘要:
An example semiconductor package with reduced solder voiding is described, which has a leadframe having an I/O pad and a thermal pad, a fabricated semiconductor die having a bond pad, where the fabricated semiconductor die is attached to a top surface of the thermal pad, and a wire bond connecting the bond pad to the I/O pad, where a bottom surface of the thermal pad has channels.
摘要:
A barrier layer can be attached in a semiconductor package to one or more sensitive devices. The barrier layer can be used to obstruct tampering by a malicious agent attempting to access sensitive information on the sensitive device. The barrier layer can cause the sensitive device to become inoperable if physically tampered. Additional other aspects of the protective packaging provide protection against x-ray and thermal probing as well as chemical and electrical tampering attempts.
摘要:
An example semiconductor package with reduced solder voiding is described, which has a leadframe having an I/O pad and a thermal pad, a fabricated semiconductor die having a bond pad, where the fabricated semiconductor die is attached to a top surface of the thermal pad, and a wire bond connecting the bond pad to the I/O pad, where a bottom surface of the thermal pad has channels.
摘要:
The addition of thermal conduits by bonding bond wires to bond pads either in a wire loop configuration or a pillar configuration can improve thermal dissipation of a fabricated die. The thermal conduits can be added as part of the normal packaging process of a semiconductor die and are electrically decoupled from the circuitry fabricated on the fabricated die. In an alternative, a dummy die is affixed to the fabricated die and the thermal conduits are affixed to the dummy die. Additionally, thermal conduits can be used in conjunction with a heat spreader.
摘要:
There is provided a system and method for a copper stud bump wafer level package. There is provided a semiconductor package comprising a semiconductor die having a plurality of bond pads on an top surface thereof, a plurality of metallic stud bumps mechanically and electrically coupled to said plurality of bond pads, and a plurality of solder balls mechanically and electrically coupled to said plurality of metallic stud bumps. Advantageously, the metallic stud bumps may be provided using standard wirebonding equipment, avoiding the conventional wafer level package requirement for photolithography and deposition steps to provide a multi-layer metallic routing structure. As a result, reduced cycle times, lower cost, and reduced complexity may be provided. Alternative fabrication processes utilizing metallic stud bumps may also support multi-die packages with dies from different wafers and packages with die perimeter pads wirebonded to substrates.