Abstract:
An aqueous cleaning composition comprises from about 0.1 to about 2 percent of hydrogen fluoride based on the volume of the composition, from about 9 to about 15 percent of hydrogen peroxide based on the volume of the composition, and from about 41 to about 47 percent of C.sub.1 to C.sub.6 alcohol based on the volume of the composition. The aqueous cleaning composition may be advantageous in that it offers increased cleaning efficiency and less corrosion in comparison to conventional cleaning solutions.
Abstract:
A conductivity detector includes a flow channel, an electrode arrangement, and a detector. The flow channel has a tube shape with a channel diameter through which a solution including ion components flows. The electrode arrangement is on the flow channel and includes at least an anode and at least a cathode. The anode and cathode are spaced apart by an electrode gap less than or equal to the channel diameter. The detector is connected to the electrode arrangement to detect electrical conductivity of the ion components.
Abstract:
An exemplary etching composition includes about 0.1 to 8% by weight of hydrogen fluoride, about 10 to 25% by weight of ammonium fluoride, about 0.0001 to 3% by weight of a non-ionic polymer surfactant, and water. Using the composition in a wet etching process, an oxide layer may be selectively removed while a pattern or storage electrode including polysilicon may be effectively passivated. The oxide layer may be removed with a high etching selectivity, while at the same time minimizing damage to the polysilicon layer.
Abstract:
In one embodiment, a method of removing a low-k layer at a low cost and a method of recycling a wafer using the same, is described. A fluoride treatment is performed on the low-k layer formed on an object using an aqueous hydrogen fluoride solution, and the low-k layer is removed from the object. The Si—O bond in the low-k layer is broken due to an aqueous hydrogen fluoride solution, so that the low-k layer is easily removed from the wafer. Accordingly, the wafer may be recycled at a low cost, thereby improving manufacturing productivity of a semiconductor.
Abstract:
An apparatus includes a chamber for containing a fluid, a guide seated in the chamber, and a transfer robot for loading and/or unloading a plurality of wafers to and/or from the guide. The wafers are located on the guide. The guide has a supporting member for supporting a wafer and a stopper member for preventing the wafer from being inclined over a predetermined range. The stopper member is in contact with a wafer edge disposed at a higher position than a wafer edge supported by the supporting member. A wafer guide has a stopper member to prevent adjacent wafers from being inclined and coming in contact with each other. Therefore, it is possible to suppress a poor drying such as water spots (or watermarks) produced when wafers are adhered to each other in a drying process.
Abstract:
An exemplary etching composition includes about 0.1 to 8% by weight of hydrogen fluoride, about 10 to 25% by weight of ammonium fluoride, about 0.0001 to 3% by weight of a non-ionic polymer surfactant, and water. Using the composition in a wet etching process, an oxide layer may be selectively removed while a pattern or storage electrode including polysilicon may be effectively passivated. The oxide layer may be removed with a high etching selectivity, while at the same time minimizing damage to the polysilicon layer.
Abstract:
An etching solution for silicon oxide may be used in a process for enlarging an opening formed through a silicon oxide layer. The etching solution includes about 0.2 to about 5.0 percent by weight of a hydrogen fluoride solution, about 0.05 to about 20.0 percent by weight of an ammonium fluoride solution, about 40.0 to about 70.0 percent by weight of an alkyl hydroxide solution and remaining water. The etching solution may etch the silicon oxide layer without damage to a metal silicide layer exposed by the opening.
Abstract:
A method for removing impurities and deposits formed in a contact hole of a semiconductor device. The method comprises the step of bathing the semiconductor device in a solution having concentrations of between about 25 to 35 weight percent of Isopropyl Alcohol (IPA), 2 to 4 weight percent of H2O2, 0.05 to 0.25 weight percent of HF, and the remaining percent of deionized water. Such bathing is preferably carried out with the solution maintained at a constant temperature of between about 20 to 25° C. for about 1 to 5 minutes.
Abstract translation:一种去除形成在半导体器件的接触孔中的杂质和沉积物的方法。 该方法包括将半导体器件洗涤在浓度为约25至35重量%的异丙醇(IPA),2至4重量%的H 2 O 2,0.05至0.25重量百分比的HF和其余百分比的溶液中的溶液的步骤 的去离子水。 这种洗浴优选在溶液保持在约20至25℃的恒定温度下进行约1至5分钟。
Abstract:
A method for manufacturing semiconductor devices including removing a photoresist and cleaning the substrate after removing the photoresist. The method for manufacturing semiconductor devices comprises removing the photoresist remaining on a semiconductor substrate using a dry etching process. The substrate is subsequently cleaned using a cleaning composition comprising a mixture of 25 to 35 weight percent of Isopropyl Alcohol (IPA), 2.0 to 4.0 weight percent of hydrogen peroxide (H.sub.2 O.sub.2), 0.05 to 0.25 weight percent of hydrofluoric acid (HF), and the remaining weight percent of deionized water.
Abstract translation:一种用于制造半导体器件的方法,包括去除光致抗蚀剂并在除去光致抗蚀剂之后清洁衬底。 用于制造半导体器件的方法包括使用干蚀刻工艺去除残留在半导体衬底上的光致抗蚀剂。 随后使用包含25至35重量%的异丙醇(IPA),2.0至4.0重量%的过氧化氢(H 2 O 2),0.05至0.25重量%的氢氟酸(HF)的混合物和 去离子水的剩余重量百分比。
Abstract:
In a composition for removing a polymeric contaminant that may remain on an apparatus for manufacturing a semiconductor device and a method of removing a polymeric contaminant using the composition, the composition includes from about 5 to 10 percent by weight of a fluoride salt, from about 5 to 15 percent by weight of an acid or a salt thereof, and from about 75 to 90 percent by weight of an aqueous solution of glycol. The composition can effectively remove the polymeric contaminant from the apparatus within a relatively short period of time, and suppress damages to parts of the apparatus.