Abstract:
Resonant-tunneling transmission lines in the various architectures rely on discrete or continuous resonant-tunneling heterostructures to actively modify propagating logic signals. One embodiment utilizes amplification of logic signals to counteract ubiquitous losses and distortion associated with any transmission medium. Basically, the logic signal is incrementally reamplified and reshaped as it propagates along the transmission line. Another embodiment is directed to a clocking system that transmits a signal represented by a sinusoid. Then, in proximity to the logic gates or modules, the sinusoid is converted into a square wave that actually clocks the gates and other logic structures. The inventive active transmission line naturally performs this feature, thus enabling clock signal transmission over longer links coupled with sinusoid-to-square wave conversion in a limited area. Still other embodiments implement step or continuous variations in the physical width of the resonant-tunneling transmission line. By manipulating the transmission line width of successive sections of the line, isolation in addition to the logic operation of the input signals is achievable in a simple monolithic circuit design. Further embodiments are directed to oscillator circuits and the control of the characteristics of the generated periodic signal.
Abstract:
Improved field-emission devices are based on composing the back contact to the emitter material such that electron-injection efficiency into the emitter material is enhanced. Alteration of the emitter material structure near the contact or geometric field enhancement due to contact morphology gives rise to the improved injection efficiency. The devices are able to emit electrons at high current density and lower applied potential differences and temperatures than previously achieved. Wide-bandgap emitter materials without shallow donors benefit from this approach. The emission characteristics of diamond substitutionally doped with nitrogen, having a favorable emitter/vacuum band structure but being limited by the efficiency of electron injection into it, show especial improvement in the context of the invention. The injection-enhancing contacts can be created by combining the emitter material with an appropriate metal compound and annealing or by conventional dry anisotropic etching or ion bombardment techniques.
Abstract:
A method and apparatus for separating ions in a liquid sample based on electrophoretic mobility. The device includes a buried channel formed upon a semiconductor wafer and surrounded by an insulating material. A matrix liquid is disposed in the channel and facilitates movement of ions through the channel. A voltage source applies a voltage between first and second electrodes mounted in first and second reservoirs, respectively. The first and second reservoirs are located at opposite ends of the channel, and hold the matrix liquid. The applied voltage generates an electric field along the length of the channel that pulls molecules that are introduced into the channel along the channel, such that molecules having one polarity are attracted to the first electrode, and molecules having a second polarity are attracted to the second electrode.
Abstract:
Improvements to graphoepitaxy include use of irradiation by electrons, ions or electromagnetic or acoustic radiation to induce or enhance the influence of artificial defects on crystallographic orientation; use of single defects; and use of a relief structure that includes facets at 70.5 and/or 109.5 degrees.
Abstract:
An improved method and apparatus for optimizing the electrical properties while crystallizing material is disclosed. In this invention, a material which is to be crystallized is formed on a substrate and subjected to a heat treatment to intentionally induce thermal stress while crystallizing the material. The heat treatment melts the material being crystallized and when the material solidifies, a built-in stress is retained which, in the case of n-doped Si on fused silica results in a tensile stress which produces an electron mobility in the film of 870 cm.sup.2 /volt-sec as compared to similarly fashioned unstressed n-doped Si on SiO.sub.2 coated Si which has an electron mobility of 500 cm.sup.2 /volt-sec.
Abstract:
A process for entraining dislocations and other crystalline defects in a thin film includes coating a substrate, such as a layer of thermally grown silicon dioxide on a silicon wafer with the thin film of polycrystalline or amorphous silicon in the thickness range 0.05-10.mu. deposited by chemical vapor deposition. An encapsulation layer that is a composite of 2 .mu.m thickness SiO.sub.2, 30 nm of Si.sub.3 N.sub.4 is deposited on the thin film. A pattern of stripes is created on this encapsulation layer made of materials, such as titanium, silicon, silicon dioxide and photoresist. A long and narrow molten zone is created in the film with its long axis oriented perpendicular to the lines and is moved with a movable strip-heater over in a direction parallel to the lines in the recrystallization process to establish the dislocation and other crystalline defects in the film entrained to follow the pattern of stripes at locations related to the stripes.
Abstract:
An improved method and apparatus for crystallizing amorphous or polycrystalline material is disclosed. In this invention, a material which is to be crystallized is formed on a substrate and single crystalline seed material is disposed adjacent and in contact with at least a portion of the material which is to be crystallized. A layer of material which serves as a "wetting agent" is then formed over the material to be crystallized. The structure thus formed is subjected to a heat treatment which melts the material being crystallized and when the material solidifies its crystalline structure is substantially epitaxial based on the seed material. The "wetting agent" layer serves to prevent deleterious balling up of the material during crystallization.
Abstract:
A surface-emission cathode formed on an insulating surface having cantilevered, i.e. “undercut,” electrodes. Suitable insulating surfaces include negative electron affinity (NEA) insulators such as glass or diamond. The cathode can operate in a comprised vacuum (e.g., 10−7 Torr) with no bias on the electrodes and low vacuum electric fields (e.g., at least 10 V cm−1). Embodiments of the present invention are inexpensive to fabricate, requiring lithographic resolution of approximately 10 micrometers. These cathodes can be formed over large areas for use in lighting and displays and are suitable for satellite applications, such as cathodes for tethers, thrusters and space-charging neutralizers.
Abstract:
Fabrication of an electron-emitting device entails distributing electron-emissive carbon-containing particles (22) over a non-insulating region (12). The particles can be made electron emissive after the particle distributing step. Particle bonding material (24) is typically provided to bond the particles to the non-insulating region. The particle bonding material can include carbide formed by heating or/and can be created by modifying a layer (32) provided between the non-insulating region and the particles. In one embodiment, the particles emit electrons primarily from graphite or/and amorphous carbon regions. In another embodiment, the particles are made electron-emissive prior to the particle distributing step.
Abstract:
In one electron-emitting device, non-insulating particle bonding material (24) securely bonds electron-emissive carbon-containing particles (22) to an underlying non-insulating region (12). The carbon in each carbon-containing particle is in the form of diamond, graphite, amorphous carbon, or/and silicon carbide. In another electron-emitting device, electron-emissive pillars (22/28) overlie a non-insulating region (12). Each pillar is formed with an electron-emissive particle (22) and an underlying non-insulating pedestal (28).