Abstract:
A computer processor is disclosed. The computer processor may comprises a vector unit comprising a vector register file comprising at least one register to hold a varying number of elements. The computer processor may further comprise processing logic configured to operate on the varying number of elements in the vector register file using one or more instructions that produce results with elements of widths different than that of the input elements. The computer processor may be implemented as a monolithic integrated circuit.
Abstract:
A processor includes a translation lookaside buffer (TLB) comprising a plurality of ways, wherein each way is associated with a respective page size, and a processing core, communicatively coupled to the TLB, to execute an instruction associated with a virtual memory page, identify a first way of the plurality of ways, wherein the first way is associated with a first page size, determine an index value using the virtual memory page and the first page size for the first way, determine, using the index value, a first TLB entry of the first way, and translate, using a memory address translation stored in the first TLB entry, the first virtual memory page to a first physical memory page.
Abstract:
A monolithic dual band antenna is provided. The monolithic dual band antenna includes a first layer comprising a high frequency band antenna. The monolithic dual band antenna further includes a second layer underlying the first layer. The second layer includes a low frequency band antenna. The geometry of the high frequency antenna relative to the low frequency antenna causes resulting electric fields of the high frequency band antenna to be orthogonal to the resulting electric fields of the low frequency band antenna.
Abstract:
A computer processor that implements pre-translation of virtual addresses is disclosed. The computer processor may include a register file comprising one or more registers. The computer processor may include processing logic. The processing logic may receive a value to store in a register of one or more registers. The processing logic may store the value in the register. The processing logic may designate the received value as a virtual address, the virtual address having a corresponding virtual base page number. The processing logic may translate the virtual base page number to a corresponding real base page number and zero or more real page numbers corresponding to zero or more virtual page numbers adjacent to the virtual base page number. The processing logic may further store in the register of the one or more registers the real base page number and the zero or more real page numbers.
Abstract:
A computer processor is disclosed. The computer processor may comprise a vector unit comprising a vector register file comprising at least one register to hold a varying number of elements. The computer processor may further comprise processing logic configured to operate on the varying number of elements in the vector register file using one or more complex arithmetic instructions. The computer processor may be implemented as a monolithic integrated circuit.
Abstract:
A computing device determines that a current software thread of a plurality of software threads having an issuing sequence does not have a first instruction waiting to be issued to a hardware thread during a clock cycle. The computing device identifies one or more alternative software threads in the issuing sequence having instructions waiting to be issued. The computing device selects, during the clock cycle by the computing device, a second instruction from a second software thread among the one or more alternative software threads in view of determining that the second instruction has no dependencies with any other instructions among the instructions waiting to be issued. Dependencies are identified by the computing device in view of the values of a chaining bit extracted from each of the instructions waiting to be issued. The computing device issues the second instruction to the hardware thread.
Abstract:
A light-emitting diode (LED) lighting device includes a white light source characterized by a general color rendering index (CRI) value and a first color-specific CRI value, and one or more LED elements of a color light within a wavelength band, wherein a combined light source comprising the white light source and the one or more LED elements is characterized by the general CRI value and a second color-specific CRI value, and the second color-specific CRI value is greater than the first color-specific CRI value.
Abstract:
A processor comprising a cache, the cache comprising a cache line, an execution unit to execute an atomic primitive to responsive to executing a read instruction to retrieve a data item from a memory location, cause to store a copy of the data item in the cache line, execute a lock instruction to lock the cache line to the processor, execute at least one instruction while the cache line is locked to the processor, and execute an unlock instruction to cause the cache controller to release the cache line from the processor.
Abstract:
A system includes a processor and an accelerator circuit including an input circuit block comprising an input processor to perform first tasks of the neural network application, a filter circuit block comprising a filter processor to perform second tasks of the neural network application, and a plurality of general-purpose filters communicatively coupled to the input circuit block, the filter circuit block, where the input circuit block and the filter circuit block form stages of an execution pipeline, a producer stage is to supply data values to a consumer stage, and operation of the consumer stage is on hold until a start flag stored in a first general-purpose register of the plurality of general-purpose registers to be set by the producer stage.
Abstract:
A system includes a memory, a processor, and an accelerator circuit. The accelerator circuit includes an internal memory, an input circuit block, a filter circuit block, a post-processing circuit block, and an output circuit block to concurrently perform tasks of a neural network application assigned to the accelerator circuit by the processor.