Abstract:
A method of monitoring a treatment of a patient, preferably for monitoring hemodialysis, hemodiafiltration and/or peritoneal dialysis, that includes the steps of irradiating a sample of a dialysis liquid used in the treatment with irradiation light of at least a first irradiation wavelength, detecting light emitted by the irradiated sample in at least a first detection wavelength, the detection wavelength being different from the first irradiation wavelength, and determining the presence and/or concentration of at least one analyte in the sample on the basis of the detected light.
Abstract:
The invention relates to a process for monitoring the supply of substitution fluid upstream or downstream of a dialyser or filter arranged in an extracorporeal blood stream. One embodiment provides, for the detection of predilution or postdilution, for measuring the pressure in the blood stream downstream of the dialyser or filter, predilution or postdilution being recognized on the basis of the change in pressure following the shutting off and/or starting up of the substituate pump provided for conveying the substitution fluid. Another embodiment provides for recognizing predilution or postdilution on the basis of the comparison of the oscillating pressure signal attributable to the substituate pump to a characteristic reference signal. The characteristic reference signal to which the pressure signal of the substituate pump is compared is preferably the oscillating pressure signal of a blood pump arranged in the blood stream for conveying the blood upstream of the dialyser or filter. In addition, the invention relates to an extracorporeal blood treatment device with a facility for detecting predilution or postdilution, which device operates according to the processes detailed above.
Abstract:
A method and a device for recognition of paravasal bleeding upon a supplying of blood to a vascular access via a line and/or upon the removal of blood from a vascular access via a line is provided. A device for extracorporeal blood treatment comprising a device for recognition of paravasal bleeding is also provided. The method and the device are based on the change of arterial pressure in the arterial branch or the venous pressure in the venous branch of the extra-corporeal circuit being registered during the extracorporeal blood treatment. One aspect of the method and the device is that pressure changes that come from a pressure level exhibiting a large difference from a reference value are more strongly considered than those that come from a pressure level that exhibits only a minor difference from the reference value.
Abstract:
Method and apparatus for controlling the dialysate flow in a dialysis device. A change of the value of a control factor, caused by a variation of a property of the dialysate or of the blood or by a change of the dialysate flow, is determined in order to control the dialysate flow. The control factor is a measure for the exchange of substances via the dialyzer and thus the effectiveness of the dialyzer. If the change of the value of the control factor exceeds a limit, the dialysate flow is increased. On the other hand, the dialysate flow is reduced if the change of the value of the control factor falls short of the limit range.
Abstract:
The present invention relates to a method for regulating supply of substituate in an extracorporeal blood treatment with an extracorporeal blood treatment apparatus comprising a dialyzer divided by a semipermeable membrane into a blood chamber and a dialyzing fluid chamber and a device for supplying substituate. Moreover, the present invention relates to an extracorporeal blood treatment apparatus having a device for regulating supply of substituate. Regulation of supply of substituate in the extracorporeal blood treatment takes place as a function of the rheological loading of the dialyzer. To regulate supply of substituate during extracorporeal blood treatment, rheological loading of the dialyzer is determined from transmembrane pressure on the dialyzer and flow resistance of the dialyzer and substituate rate is increased or reduced according to the loading. The selection of dialyzer parameters or blood parameters is therefore no longer necessary and the distinction between pre-dilution and post-dilution is also made obsolete.
Abstract:
The invention relates to a method and a hemodialysis machine for at least partial emptying of an extracorporeal blood circulation after the blood of a patient in the extracorporeal blood circulation has been returned to the patient with the help of an infusion liquid which displaces the blood and after the patient has been separated from the extracorporeal blood circulation. The object of the invention is to empty at least the blood chamber of a hemodialyzer (1) that is subdivided by a semipermeable membrane (2) into a blood chamber (3) and a dialysis fluid chamber (4) without additionally connecting the arterial blood line (5) and the venous blood line (7) of the extracorporeal blood circulation to one another. To do so, the arterial blood line (5) is actively or passively aerated at a first point (50) and/or the venous blood line (7) is actively or passively aerated at a second point (40) and the liquid is emptied through the semipermeable membrane (2) into the dialysis fluid chamber (4) and a dialysis fluid discharge line (21) leaving this chamber. The inventive method can take place here through a control program that runs automatically in the control unit (30) of a hemodialysis machine without requiring special operating steps by the operating person after activation of the program.
Abstract:
This invention relates to a method for clearing a wetted hydrophobic filter, in which in a first step the air permeability of the hydrophobic filter is monitored and in which in a second step the hydrophobic filter is cleared by means of a connected air pump, if it is detected that the hydrophobic filter is clogged. Furthermore, the invention relates to an apparatus for performing this method.
Abstract:
The invention relates to a method and to a device for operating an electric peristaltic hose pump, in particular a hose pump for transporting fluids in medical-technical devices, in particular extracorporeal blood treatment devices. In order to monitor the regular operation of a hose pump, the power consumption of the pump or a physical variable in correlation with the power consumption, in particular the pump flow, is monitored. The pump flow includes a periodically non-altering direct component which is superimposed on a periodically altering alternating component. In order to monitor the regular operation of the hose pump, the alternating component of the power consumption in relation to the direct component of the power consumption is monitored as whether it increases and/or decreases during blood treatment.
Abstract:
A method for clearing a wetted hydrophobic filter includes a first step in which the air permeability of the hydrophobic filter is monitored, and a second step in which the hydrophobic filter is cleared by means of a connected air pump, if it is detected that the hydrophobic filter is clogged. An apparatus for performing this method includes a pressure sensor and an air pump connected to an air separation chamber via a conduit, and a control and monitoring unit configured to actuate the air pump in order to clear the hydrophobic filter.
Abstract:
The invention further relates to an apparatus and method for monitoring a peristaltic hose pump, in particular a peristaltic hose pump of an extracorporeal blood treatment device. The power consumed by the pump and/or the pressure in the tubing segment upstream or downstream of the pump is/are measured during operation of the pump and test signals I1(t), I2(t) which are associated with the individual displacement members are determined. The power or pressure signals associated with the individual displacement members significantly differ from each other during abnormal operation of the hose pump, but no significant differences can be recognized during normal operation of the pump.