Abstract:
A method to provide compressive stress to substrates includes depositing a film on a ceramic substrate at a deposition temperature (Td) to form an article, the film having a difference relative to the ceramic substrate at Td in a coefficient thermal expansion (CTE) of at least 1.0×10−6/K and a difference in a refractive index >0.10. At least a portion of the thickness the film is converted in at least one of composition, phase and microstructure by lowering or raising the temperature from Td to reach a changed temperature (Tc) that is at least 100° C. different from Td. The film converting conditions result in the converted film portion providing a difference in refractive index at the Tc between the converted film and the ceramic substrate of ≤|0.10|. The temperature of the article is then lowered to room temperature.
Abstract:
A CMP method uses a slurry including colloidal metal oxide or colloidal semiconductor oxide particles (colloidal particles) in water. At least one particle feature is selected from (i) the colloidal particles having a polydispersity >30%, and (ii) mixed particle types including the colloidal particles having an average primary size >50 nm mixed with fumed oxide particles having average primary size
Abstract:
A method of chemical mechanical polishing (CMP) a diamond containing surface includes providing a slurry including a plurality of particles, at least one oxidizer, and at least one acid, wherein the slurry has a pH≦3 or pH greater than 11. At least an outer surface of the plurality of particles is softer than the diamond surface or the particles are diamond particles averaging less than (
Abstract:
A CMP method uses a slurry including a first metal oxide or semiconductor oxide particles (first oxide particles) in water. At least one particle feature is selected from (i) first oxide particles having a polydispersity >30%, (ii) a coating on first oxide particles including Group I or Group II ions, transition metal oxide, or organic material, (iii) first oxide particles mixed with fumed oxide particles, (iv) first oxide particles with average primary size >50 nm mixed with fumed oxide particles having average primary size 150 m2/gm. A substrate having an alumina surface is placed into a CMP apparatus, and CMP is performed with a rotating polishing pad and the slurry to polish the alumina surface.
Abstract:
A chemical mechanical polishing (CMP) includes providing a slurry including composite particles dispersed in a water-based carrier that comprise a plurality of hard particles on an outer surface of a soft-core particle. The hard particles have a Mohs hardness at least 1 greater than a Mohs hardness of the soft core particle and/or a Vickers hardness at least 500 Kg/mm2 greater than the soft-core particle. A substrate having a substrate surface with a hardness greater than a Mohs number of 6 or a Vickers hardness greater than 1,000 kg/mm2 is placed into a CMP apparatus having a rotating polishing pad, and CMP is performed with the rotating polishing pad and the slurry to polish the substrate surface.
Abstract translation:化学机械抛光(CMP)包括提供包括分散在水性载体中的复合颗粒的浆料,其包含在软核颗粒的外表面上的多个硬颗粒。 硬质颗粒具有比软核颗粒的莫氏硬度至少大1的莫氏硬度和/或比软核颗粒大至少500kg / mm 2的维氏硬度。 将具有大于莫氏数6的维氏硬度大于1000kg / mm2的基板表面的基板放置在具有旋转抛光垫的CMP设备中,并且用旋转抛光垫和浆料进行CMP 抛光衬底表面。
Abstract:
A chemical mechanical polishing (CMP) includes providing a slurry including composite particles dispersed in a water-based carrier that comprise a plurality of hard particles on an outer surface of a soft-core particle. The hard particles have a Mohs hardness at least 1 greater than a Mohs hardness of the soft core particle and/or a Vickers hardness at least 500 Kg/mm2 greater than the soft-core particle. A substrate having a substrate surface with a hardness greater than a Mohs number of 6 or a Vickers hardness greater than 1,000 kg/mm2 is placed into a CMP apparatus having a rotating polishing pad, and CMP is performed with the rotating polishing pad and the slurry to polish the substrate surface.
Abstract translation:化学机械抛光(CMP)包括提供包括分散在水性载体中的复合颗粒的浆料,其包含在软核颗粒的外表面上的多个硬颗粒。 硬质颗粒具有比软核颗粒的莫氏硬度至少大1的莫氏硬度和/或比软核颗粒大至少500kg / mm 2的维氏硬度。 将具有大于莫氏数6的维氏硬度大于1000kg / mm2的基板表面的基板放置在具有旋转抛光垫的CMP设备中,并且用旋转抛光垫和浆料进行CMP 抛光衬底表面。
Abstract:
A patterned article includes a substrate support having planar substrate surface portions including a substrate material having a substrate refractive index. A patterned surface is on the substrate support including a plurality of features lateral to the planar substrate surface portions protruding above a height of the planar substrate surface portions. At least a top surface of the plurality of features include an epi-blocking layer including at least one of (i) a non-single crystal material having a refractive index lower as compared to the substrate refractive index and (ii) a reflecting metal or a metal alloy (reflecting material). The epi-blocking layer is not on the planar substrate surface portions.
Abstract:
A method of chemical mechanical polishing (CMP) a diamond containing surface includes providing a slurry including a plurality of particles, at least one oxidizer, and at least one acid, wherein the slurry has a pH≦3 or pH greater than 11. At least an outer surface of the plurality of particles is softer than the diamond surface or the particles are diamond particles averaging less than (
Abstract:
A method for forming an epitaxial layer on a substrate surface having crystalline defect or amorphous regions and crystalline non-defect regions includes preferential polishing or etching the crystalline defect or amorphous regions relative to the crystalline non-defect regions to form a decorated substrate surface having surface recess regions. A capping layer is deposited on the decorated substrate surface to cover the crystalline non-defect regions and to at least partially fill the surface recess regions. The capping layer is patterned by removing the capping layer over the crystalline non-defect regions to form exposed non-defect regions while retaining the capping layer in at least a portion of the surface recess regions. Selective epitaxy is then used to form the epitaxial layer, wherein the capping layer in the surface recess regions restricts epitaxial growth of the epitaxial layer over the surface recess regions.