Abstract:
The array of heterogeneous catalysts and/or their precursors, is made up of a body which has, preferably parallel, through-channels and in which at least n channels comprise n different heterogeneous catalysts and/or their precursors, where n is 2, preferably 10, particularly preferably 100, in particular 1000, especially 10,000. A process for preparing arrays comprising the following steps: a1) preparing solutions, emulsions and/or dispersions of elements and/or element compounds of the elements present in the catalyst and/or catalyst precursor and, if appropriate preparing dispersions of inorganic support materials, a2) if appropriate introducing adhesion promoters, binders, viscosity regulators, pH regulators and/or solid inorganic supports into the solutions, emulsions and/or dispersions, a3) simultaneously or successively coating the channels of the body with the solutions, emulsions and/or dispersions, a predetermined amount of the solutions, emulsions and/or dispersions being introduced into each channel to obtain a predetermined composition and a4) if appropriate heating the coated body in the presence or absence of inert gases or reactive gases to a temperature in the range from 20 to 1500° C. to dry, with or without sintering or calcining, the catalysts and/or catalyst precursors.
Abstract:
A process for preparing arrays of heterogeneous catalysts and/or their precursors, made up of a body which has, preferably parallel, through-channels and in which at least n channels comprise n different heterogeneous catalysts and/or their precursors, where n is 2, preferably 10, particularly preferably 100, comprises the following steps: a1) preparing solutions, emulsions and/or dispersions of elements and/or element compounds of the chemical elements present in the catalyst and/or catalyst precursor and, if appropriate preparing dispersions of inorganic support materials, a2) if appropriate introducing adhesion promoters, binders, viscosity regulators, pH regulators and/or solid inorganic supports into the solutions, emulsions and/or dispersions, a3) simultaneously or successively coating the channels of the body with the solutions, emulsions and/or dispersions, a predetermined amount of the solutions, emulsions and/or dispersions being introduced into each channel to obtain a predetermined composition, a4) treating and reacting with one or more reactive gases the freshly impregnated moist channels obtained after the coating, and a5) if appropriate heating the coated body in the presence or absence of inert gases or reactive gases to a temperature in the range from 20 to 1500° C. to dry, with or without sintering or calcining, the catalysts and/or catalyst precursors.
Abstract:
Spirocyclic cyclohexane compounds corresponding to formula I a process for manufacturing such compounds, pharmaceutical compositions that contain such compounds, and the use of such spirocyclic cyclohexane compounds for the production of pharmaceuticals, and particularly for the treatment of pain.
Abstract:
Processes for the liquid phase oxidation of one or more of a para- or a meta-substituted dialkyl aromatic compound are disclosed, the processes including a step of combining in a reaction medium the one or more para- or meta-substituted dialkyl aromatic compound, a solvent mixture comprising water and a saturated organic acid having from 2-4 carbon atoms, and an oxygen-containing gas, at a temperature from about 130° C. to about 180° C., in the presence of a catalyst composition comprising cobalt, manganese, bismuth, and bromine. The processes produce the corresponding aromatic dicarboxylic acid product with improved conversion, while reducing the formation of carbon oxides.
Abstract:
The present invention relates to decomposable monolithic ceramic materials having an at least bimodal pore structure, in particular having micropores and mesopores or mesopores and macropores or micropores, mesopores and marcopores, optinally having metal centres located in the pores. The invention further relates to processes for producing the materials of the invention and to the use of the materials of the invention and the materials produced by one of the processes of the invention, in particular in catalysis and catalyst research and in medical technology and for the time-delayed release of active compounds in the pharmaceutical industry.
Abstract:
A process for preparing an alkali metal or alkaline earth metal salt of an α,β-ethylenically unsaturated carboxylic acid, wherein a) an alkene, carbon dioxide and a carboxylation catalyst are converted to an alkene/carbon dioxide/carboxylation catalyst adduct, b) the adduct is decomposed to release the carboxylation catalyst with an auxiliary base to give the auxiliary base salt of the α,β-ethylenically unsaturated carboxylic acid, c) the auxiliary base salt of the α,β-ethylenically unsaturated carboxylic acid is reacted to release the auxiliary base with an alkali metal or alkaline earth metal base to give the alkali metal or alkaline earth metal salt of the α,β-ethylenically unsaturated carboxylic acid. Salts of α,β-ethylenically unsaturated carboxylic acids, such as sodium acrylate in particular, are required in large amounts, for example, for production of water-absorbing resins.
Abstract:
A hexaaluminate-containing catalyst for reforming hydrocarbons. The catalyst consists of a hexaaluminate-containing phase, which consists of cobalt and at least one further element from the group consisting of La, Ba, and Sr, and an oxidic secondary phase. To prepare the catalyst, an aluminum source is brought into contact with a cobalt-containing metal salt solution, dried, and calcined. The metal salt solution additionally contains the at least one further element. The reforming of methane and carbon dioxide is great economic interest since synthesis gas produced during this process can form a raw material for the preparation of basic chemicals. In addition, the use of carbon dioxide as a starting material is important in the chemical syntheses in order to bind carbon dioxide obtained as waste product in numerous processes by a chemical route and thereby avoid emission into the atmosphere.
Abstract:
The present invention relates to a process for producing a catalyst for carrying out methanation reactions. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds brought into contact with one another are intimately mixed, thermally treated so that the metal salt fraction melts and subsequently subjected to a low-temperature calcination step and a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises/contains nickel nitrate hexahydrate. The hydrotalcite-comprising starting material is preferably hydrotalcite or a hydrotalcite-like compound as starting material, and the hydrotalcite-comprising starting material preferably comprises magnesium and aluminum as metal species.The catalyst of the invention is preferably used for carrying out methanation reactions at elevated pressures (from 10 to 50 bar) and elevated temperatures.
Abstract:
The present invention relates to a process for preparing polyisocyanates from natural raw material sources, in which a composition comprising low molecular weight aromatics which comprise at least one hydroxy group or at least one alkoxy group per molecule (oxyaromatics) is produced from a biomass material, these oxyaromatics are converted into the corresponding aromatic amines and, optionally after condensation with formaldehyde, reacted further with phosgene to give compounds comprising isocyanate groups.
Abstract:
The invention relates to a catalyst for partially oxidizing hydrocarbons in the gas phase, containing a multi-metal oxide of the general formula (I), AgaMObVcMdOe.f H2O (I), wherein M stands for at least one element selected from among Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Si, Sn, Pb, P, Sb, Bi, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Au, Zn, Cd, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and U, a has a value of 0.5 to 1.5, b has a value of 0.5 to 1.5, c has a value of 0.5 to 1.5, a+b+c has the value 3, d has a value of less than 1, e means a number that is determined by the valence and frequency of the elements other than oxygen in the formula (I), f has a value of 0 to 20, which multi-metal oxide exists in a crystal structure, the X-ray powder diffractogram of which is characterized by diffraction reflections at a minimum of 5 lattice distances selected from among d=4.53, 3.38, 3.32, 3.23, 2.88, 2.57, 2.39, 2.26, 1.83, 1.77 AA (+−0.04 AA).