摘要:
A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device in a coil pattern over the compliant pad to its end area, forming a helix. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. In an alternative embodiment, the pad is removed to leave a freestanding helical contact.
摘要:
A forming tool with one or more embossing tooth, and preferably, a plurality of such embossing teeth, arranged on a substantially planar substrate, is disclosed. Each embossing tooth is configured for forming a sacrificial layer to provide a contoured surface for forming a microelectronic spring structure. Each embossing tooth has a protruding area corresponding to a base of a microelectronic spring, and a sloped portion corresponding to a beam contour of a microelectronic spring. Numerous methods for making a forming tool are also disclosed. The methods include a material removal method, a molding method, a repetitive-stamping method, tang-bending methods, and segment-assembly methods.
摘要:
An interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is modified. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume).
摘要:
A test head assembly can include a probe card, which can include first contact areas. The test head assembly can also include a contactor, which can include second contact areas. An interposer can include first spring contact structures and second spring contact structures. The first spring contact structures can contact one of the first contact areas, and the second spring contact structures can contact one of the second contact areas. Ones of the first spring contact structures can be electrically connected through the interposer to ones of the second spring contact structures. One of the first spring contact structures can include a pair of contacts, both of which can extend from a first surface of the interposer to contact one of the first contact areas. Alternatively or additionally, one of the second spring contact structures can include a pair of contacts, both of which can extend form a second surface of the interposer to contact one of the second contact areas.
摘要:
Improved lithographic type microelectronic spring structures and methods are disclosed, for providing improved tip height over a substrate, an improved elastic range, increased strength and reliability, and increased spring rates. The improved structures are suitable for being formed from a single integrated layer (or series of layers) deposited over a molded sacrificial substrate, thus avoiding multiple stepped lithographic layers and reducing manufacturing costs. In particular, lithographic structures that are contoured in the z-direction are disclosed, for achieving the foregoing improvements. For example, structures having a U-shaped cross-section, a V-shaped cross-section, and/or one or more ribs running along a length of the spring are disclosed. The present invention additionally provides a lithographic type spring contact that is corrugated to increase its effective length and elastic range and to reduce its footprint over a substrate, and springs which are contoured in plan view. The present invention further provides combination (both series and parallel) electrical contacts tips for lithographic type microelectronic spring structures. The microelectronic spring structures according to the present invention are particularly useful for making very fine pitch arrays of electrical connectors for use with integrated circuits and other substrate-mounted electronic devices, because their performance characteristics are enhanced, while at the same time, they may be manufactured at greatly reduced costs compared to other lithographic type microelectronic spring structures.
摘要:
A method of fabricating and using an interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is deformed. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume) resulting in the deformation of the interconnection element.
摘要:
An ultrasonic structure which has a thin planar sheet of material forming a Lamb wave propagation medium The propagation medium is coated with a gel. The structure may also include a Lamb wave generator for generating Lamb waves in the propagation medium and an output device for producing an electrical signal representative of the propagation characteristics of the Lamb waves propagating along the propagation medium. A measuring device can be included to measure selected characteristics of the output electrical signal. The propagation medium has some physical characteristics that are determined by the value of a measurand acting on the medium and the determined physical characteristics determine the propagation characteristics of the Lamb waves which are propagated along the medium. When the sensor is acted on by a measurand to determine the physical characteristics of the propagation medium, the characteristics of the electrical signal are also determined. The measuring device measures the electrical signal and provides an indication of the measurand value.