Abstract:
A nerve graft includes a lyophobic substrate, a carbon nanotube film structure, a protein layer, and a nerve network. The carbon nanotube film structure is located on a surface of the lyophobic substrate. The protein layer is located on a surface of the carbon nanotube film structure away from the lyophobic substrate. The nerve network is positioned on a surface of the protein layer away from the lyophobic substrate.
Abstract:
A shutter blade is provided. The shutter blade includes a carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes. A shutter using the shutter blade is also provided. The camera shutter includes a blade structure, two drive units, a substrate defining an aperture, and a connection unit located on the substrate. The blade structure is connected with the connection unit and controls the aperture to be covered or uncovered. The blade structure includes at least two the above-mentioned shutter blades. The drive units are located on a same side of the substrate and configured to drive the blade structure to rotate clockwise or counterclockwise.
Abstract:
A method for making a TEM micro-grid is provided. The method includes the following steps. A carrier, a carbon nanotube structure, and a protector are provided. The carrier defines a first through opening. The protector defines a second through opening. The protector, the carbon nanotube structure and the carrier are stacked such that the carbon nanotube structure is located between the carrier and the protector. The second through opening at least partly overlaps with the first through opening.
Abstract:
A transmission electron microscope (TEM) micro-grid includes a base and a plurality of electron transmission portions. The base includes a plurality of first carbon nanotubes and the first carbon nanotubes have a first density. Each electron transmission portions includes a hole defined in the base and a plurality of second carbon nanotubes located in the hole. The second carbon nanotubes have a second density. The second density is less than the first density. The base and the electron transmission portions form the TEM micro-grid for observation of a sample using a TEM microscope.
Abstract:
A thermoacoustic device includes a base, a plurality of first fasteners, at least one first electrode, at least one second electrode and a sound wave generator. Each of the first fasteners includes a body engaging with the base and a flexible element extending from the body. The at least one first electrode has a first end and a second end. The first end engages with the flexible element of the plurality of first fasteners, and the second end is secured on the base. The at least one second electrode has a third end and a fourth end. The third end engages with the flexible element of the plurality of first fasteners, and the fourth end is secured on the base. The sound wave generator is electrically connected to the at least one first electrode and the at least one second electrode.
Abstract:
A touch panel includes a first electrode plate having a first conductive layer and a second electrode plate including a second conductive layer opposite to the first conductive layer. At least one of the first conductive layer and the second conductive layer includes a carbon nanotube film. The carbon nanotube film includes a number of thin regions and at least one normal region having a number of successively oriented carbon nanotubes joined end-to-end by Van der Waals attractive force therebetween. The carbon nanotubes are substantially aligned along a same direction. The at least one normal region has a density of carbon nanotubes greater than that of the number of thin regions, and the number of thin regions form at least one row extending along the aligned direction of the carbon nanotubes of the at least one normal region.
Abstract:
A system for measuring intensity distribution of light includes a carbon nanotube array located on a surface of a substrate, a reflector and an imaging element. The carbon nanotube array absorbs photons of a light source and radiates a visible light. The reflector is used to reflect the visible light, and the reflector is spaced from the carbon nanotube array. The carbon nanotube array is located between the reflector and the substrate. The imaging element is used to image the visible light. The imaging element is spaced from the substrate.
Abstract:
A pacemaker is provided. The pacemaker includes a pulse generator and an electrode line connecting with the pulse generator. The electrode line includes a conductor, an insulation layer and a shielding layer. The insulation layer is located on an outer surface of the conductor. The shielding layer is located on an outer surface of the first insulation layer. The shielding layer is a carbon nanotube structure having a plurality of radioactive particles therein.
Abstract:
A stereomicroscope includes a base and a vessel which is disposed on the base. The vessel includes a transparent body and a light emitting unit. The transparent body has a bottom and a sidewall. The bottom and the sidewall define an opening. The sidewall extends from a side of the bottom. The opening of the transparent body places a specimen. The light emitting unit is fixed in the sidewall of the transparent body for emitting light. The light emitted from the light emitting unit illuminates the specimen, and is substantially parallel to the bottom of the transparent body.
Abstract:
A base for making an epitaxial structure is provided. The base includes a substrate and a carbon nanotube layer. The substrate has an epitaxial growth surface. The carbon nanotube layer is located on the epitaxial growth surface. The carbon nanotube layer defines a plurality of apertures to expose part of the epitaxial growth surface so that an epitaxial layer can grow from an exposed epitaxial growth surface and through the apertures. A method for making an epitaxial structure using the base is also provided.