摘要:
This application discloses, to the best of our knowledge, the first unipolar laser. An exemplary embodiment of the laser was implemented in the GaInAs/AlInAs system and emits radiation of about 4.2 .mu.m wavelength. Embodiments in other material systems are possible, and the lasers can be readily designed to emit at a predetermined wavelength in a wide spectral region. We have designated the laser the "quantum cascade" (QC) laser. The QC laser comprises a multilayer semiconductor structure that comprises a multiplicity of essentially identical undoper "active" regions, a given active region being separated from an adjoining one by a doped "energy relaxation" region. In a currently preferred embodiment each active region comprises three coupled quantum wells designed to facilitate attainment of population inversion. In the currently preferred embodiment the energy relaxation regions are digitally graded gap regions. However, other energy relaxation regions are possible. The unipolar plasma in a unipolar laser can be manipulated by means of an electric "control" field, facilitating, for instance, beam steering or external control of the modal gain of the laser. Means for accomplishing this are discussed.
摘要:
A plurality of decoupled quantum wells in a transistor device enables such device to operate with multiple-peak characteristics. The device is suitable for a variety of circuit applications in switching systems and in central processor logic units and memories; specific applications include frequency multipliers, waveform scramblers, parity-bit generators, analog-to digital converters, and multiple-valued logic units.
摘要:
A semiconductor integrated resonant-tunneling device having multiple negative-resistance regions, and having essentially equal current peaks in such regions, is useful as a highly compact element, e.g., in apparatus designed for ternary logic operations, frequency multiplication, waveform scrambling, memory operation, parity-bit generation, and coaxial-line driving. The device can be made by layer deposition on a substrate and includes a resonant-tunneling structure between contacts such that side-by-side first and third contacts are on one side, and a second contact is on the opposite side of the resonant-tunneling structure.
摘要:
Photoconductive gain is observed in a device comprising a superlattice having well and barrier layers, and cladding layers on the opposite sides of the superlattice with the barrier layers of the superlattice having an energy bandgap greater than the bandgap of the cladding layers.
摘要:
Parallel channels are separated by ridges formed in a semiconductor body in such a way that each channel is wider at its base than at its top. Molecular beam epitaxy is used to deposit semiconductor layers on the ridges and in the channels. Because each channel is narrower at its top than at its base, the configuration is essentially self-masking. That is, the layers in the channel are physically separate from those on the ridges, as would be metallic contacts deposited on the layers. This technique is employed in the fabrication of a plurality of self-aligned, stripe geometry, mesa double heterostructure junction lasers.
摘要:
This invention embodies an integrated optical package including an optical component having an asymmetric modal output, and a lens integrated with the component for coupling to another optical component having a large modal area. The coupling is achieved by the use of a Polymeric Elongated Waveguide Emulating (PEWE) lens. In the exemplary embodiment the first optical component is a modulator, and the other optical component is an optical fiber. A facet of the modulator is etched by reactive ion etching (REE) which allows integration of the PEWE lens on a common substrate. The lens is manufactured using a polymer film on a dielectric cladding layer. The fabrication relies on the remelt and reflow properties of polymer films to provide a smooth adiabatic mode contraction from a circular (optical fiber) mode (.apprxeq.6 .mu.m in diameter) to a semiconductor mode (.apprxeq.1 .mu.m) over a length of 250 .mu.m. The PEWE lens permits coupling with an insertion loss of 0.5 dB and 80 percent-coupling efficiency, even though the lens is butt-coupled to a fiber without any external lens. The PEWE lens allows the realization of better than 80 percent direct fiber butt-coupling efficiencies to semiconductor lasers, photodetectors, optical modulators, switches and amplifiers with a simultaneous order of magnitude relaxation of the alignment tolerances typically needed for the coupling of semiconductor devices with single-mode fibers.
摘要:
This invention embodies a LED in which an optical cavity of the LED, which includes an active layer (or region) and confining layers, is within a resonant Fabry-Perot cavity. The LED with the resonant cavity, hereinafter called Resonant Cavity LED or RCLED, has a higher spectral purity and higher light emission intensity relative to conventional LEDs. The Fabry-Perot cavity is formed by a highly reflective multilayer distributed Bragg reflector (DBR) mirror (R.sub.B .gtoreq.0.99) and a mirror with a low to moderate reflectivity (R.sub.T .perspectiveto.0.25-0.99). The DBR mirror, placed in the RCLED structure between the substrate and the confining bottom layer, is used as a bottom mirror. Presence of the less reflective top mirror above the active region leads to an unexpected improvement in directional light emission characteristics. The use of a Fabry-Perot resonant cavity formed by these two mirrors results in optical spontaneous light emission from the active region, which is restricted to the modes of the cavity. While the bottom DBR mirror reduces absorption by the substrate of that light portion which is emitted toward the substrate, the two mirrors of the resonant cavity reduce the isotropic emission and improve the light emission characteristics in terms of a more directed (anisotropic) emission.
摘要:
A semiconductor integrated resonant-tunneling device having multiple negative-resistance regions, and having essentially equal current peaks in such regions, is useful as a highly compact element, e.g., in apparatus designed for ternary logic operations, frequency multiplication, waveform scrambling, memory operation, parity-bit generation, and coaxial-line driving. The device can be made by layer deposition on a substrate and includes a resonant-tunneling structure between contacts such that side-by-side first and third contacts are on one side, and a second contact is on the opposite side of the resonant-tunneling structure. Disclosed further are (two-terminal) resonant-tunneling diodes as incorporated in memory devices, e.g., in lieu of 2-transistsor flip-flops; room-temperature device operation; and devices comprising an essentially undoped accelerator region between an emitter contact and a resonant-tunneling structure.
摘要:
Surface recombination current in GaAs devices is reduced by means of a semi-insulating, oxygen, iron or chromium doped monocrystalline layer of AlGaAs grown by MBE. The AlGaAs layer is grown on a GaAs body and is then masked. Diffusion of suitable impurities through a window in the mask converts the exposed portions of the AlGaAs layer to low resistivity and modifies the conductivity of the underlying zone of the GaAs body. The peripheral portions of the AlGaAs layer, however, remain semi-insulating and are effective to reduce the surface recombination velocity - diffusion length product by more than an order of magnitude.
摘要:
Apparatus for molecular beam deposition sequentially on a plurality of substrates is described. The apparatus includes a growth chamber and an auxiliary (sample-exchange) chamber coupled by an air-lock. The substrates are carried by a rod which can be translated via a bellows mechanism between the two chambers. The auxiliary chamber includes a port which permits access to the samples so that the entire rod-bellows mechanism need not be removed in order to change samples. The auxiliary chamber also includes means for maintaining therein an inert atmosphere at a pressure in excess of atmospheric pressure especially when the port is open. The growth chamber includes a cylindrical liquid nitrogen (LN.sub.2) shroud which has an aperture in its wall to admit molecular beams to only a heated (growth) substrate. The unheated (idle) substrates are thus shaded from the beams. In addition, the shroud surrounds both the growth substrate and idle substrates in the growth chamber. This configuration of the shroud reduces the likelihood of contamination of idle substrates. In addition, the growth chamber includes means for selectively heating the growth substrate, the idle substrates remaining unheated so as to reduce the evaporation of high vapor pressure elements therefrom.Another aspect of the invention is the provision of uniquely designed pyrolytic BN effusion cells for generating the various molecular beams.