摘要:
This invention embodies a LED in which an optical cavity of the LED, which includes an active layer (or region) and confining layers, is within a resonant Fabry-Perot cavity. The LED with the resonant cavity, hereinafter called Resonant Cavity LED or RCLED, has a higher spectral purity and higher light emission intensity relative to conventional LEDs. The Fabry-Perot cavity is formed by a highly reflective multilayer distributed Bragg reflector (DBR) mirror (R.sub.B .gtoreq.0.99) and a mirror with a low to moderate reflectivity (R.sub.T .perspectiveto.0.25-0.99). The DBR mirror, placed in the RCLED structure between the substrate and the confining bottom layer, is used as a bottom mirror. Presence of the less reflective top mirror above the active region leads to an unexpected improvement in directional light emission characteristics. The use of a Fabry-Perot resonant cavity formed by these two mirrors results in optical spontaneous light emission from the active region, which is restricted to the modes of the cavity. While the bottom DBR mirror reduces absorption by the substrate of that light portion which is emitted toward the substrate, the two mirrors of the resonant cavity reduce the isotropic emission and improve the light emission characteristics in terms of a more directed (anisotropic) emission.
摘要:
This invention embodies a Vertical Cavity Surface Emitting Laser with a top mirror comprising at least one pair of quarterwave layers, each pair consisting of a low index of refraction layer and a high index of refraction layer, the high index of refraction layer being a semiconductor chosen from GaP and ZnS and the low index of refraction layer being chosen from borosilicate glass (BSG) CaF.sub.2,MgF.sub.2 and NaF. Especially useful in vertical cavity surface emitting lasers are mirrors formed by a stack of a plurality of pairs of GaP/BSG or ZnS/CdF.sub.2. Such mirrors have a high reflectivity characteristics required for an efficient operation of the laser. The GaP/BSG or ZnS/CaF.sub.2 mirror structure represents a considerable improvement over previous designs for VCSELs in terms of ultimate reflectivity, low loss, and post growth processing compatibility.
摘要:
Optically transparent and electrically conductive cadmium tin oxide or indium tin oxide is employed in vertical cavity surface emitting lasers for vertical current injection. Continuous wave lasing at room temperature is achieved in GaAs/AlGaAs quantum well lasers. Devices with a 10 .mu.m optical window which also serves as a vertical current injection inlet give lasing threshold currents as low as 3.8 mA. The differential series resistance is (350-450) .OMEGA. with a diode voltage of (5.1-5.6) V at the lasing threshold. Far field pattern of the laser emission is Gaussian-like with a full width at half maximum of 7.degree..
摘要:
Conduction band or valence band discontinuities occurring at the junction of two unipolar heterogeneous semiconductors can be eliminated by compositional grading of the heterointerface and appropriate doping of the interfacial region. The compositional potential of graded junction and an interface dipole potential generated by modulation doping of the interfacial region are selected such that they exactly compensate each other. The compositional grading of the interface is achieved by semiparabolic grading of narrow regions immediately adjacent each side of the interface. The modulation doping is achieved by doping the two materials with suitable dopants, donors for the conductance band or acceptors for the valence band, depending on the polarity of the structure. This reduces the resistance in periodic semiconductor multilayer structures leading to low-resistance distributed Bragg reflectors.
摘要:
This invention is a semiconductor vertical cavity surface emitting laser comprising a lasing cavity with an active layer, a bottom (rear) mirror and a top (front) mirror, and a front and rear electrodes for applying excitation current in direction substantially parallel to the direction of optical propagation. In accordance with this invention the front mirror comprises a thin, semitransparent metal layer which also acts as the front electrode. The metal layer is upon a highly doped layer forming a non-alloyed ohmic contact. The metal is selected from Ag and Al and is deposited in thickness ranging from 5 to 55 nm. The VCSEL is a semiconductor device wherein the semiconductor material is a III-V or II-VI compound semiconductor. For a VCSEL with GaAs active layer, the light output from the front metal mirror/electrode side yields a high external differential quantum efficiency as high as 54 percent. This is the highest quantum efficiency obtained in VCSEL structures. Quantum efficiencies on the oder of 10 to 30 percent are typical for prior art VCSEL structures. The VCSEL is suitable for fabrication utilizing planar technology.
摘要:
Disclosed is a method of fabricating a stoichiometric gallium oxide (Ga.sub.2 O.sub.3) thin film with dielectric properties on at least a portion of a semiconducting, insulating or metallic substrate. The method comprises electron-beam evaporation of single crystal, high purity Gd.sub.3 Ga.sub.5 O.sub.12 complex compound combining relatively ionic oxide, such as Gd.sub.2 O.sub.3, with the more covalent oxide Ga.sub.2 O.sub.3 such as to deposit a uniform, homogeneous, dense Ga.sub.2 O.sub.3 thin film with dielectric properties on a variety of said substrates, the semiconducting substrates including III-V and II-VI compound semiconductors.
摘要翻译:公开了一种在半导体,绝缘或金属基底的至少一部分上制造具有介电特性的化学计量的氧化镓(Ga 2 O 3)薄膜的方法。 该方法包括电子束蒸发单晶,高纯Gd3Ga5O12复合化合物,将相对离子氧化物(如Gd2O3)与较多共价氧化物Ga2O3结合,以沉积均匀,均匀致密的Ga2O3薄膜,具有介电性能 的所述衬底,所述半导体衬底包括III-V和II-VI化合物半导体。
摘要:
Absorption properties of an optically active medium can be changed drastically by a Fabry-Perot microcavity. Optically active medium of the cavity includes a host material which is not optically active and at least one rare earth ion which provides optical activity to the medium. The Fabry-Perot cavity is designed to be resonant with excitation wavelength of an absorption band of the host material. The excitation is provided by a source of radiation positioned such that the radiation impinges on the cavity at an angle within a range of from zero to less than 90 degrees from the normal to the top surface of the cavity. In one embodiment Er-implanted SiO.sub.2 is used as the optically active medium. SiO.sub.2 :Er has an absorption band at 980 nm and an emission band at 1.55 .mu.m due to 4f intra-atomic transitions of Er.sup.3+ ions. The Fabry-Perot cavity is designed to be resonant with the 980 nm absorption band of SiO.sub.2 :Er. The efficiency of the cavity structure is much higher as compared to a no-cavity structure, while the spectral features of the active SiO.sub.2 :Er emission are unaltered. The structure can be used for optically pumped semiconductor devices, such as optical amplifiers or lasers, which could be operated with a higher overall efficiency.
摘要:
This invention embodies an optical device with a Fabry-Perot cavity formed by two reflective mirrors and an active layer which is doped with a rare earth element selected from lanthanide series elements with number 57 through 71. The thickness of the active layer being a whole number multiple of .lambda./2 wherein .lambda. is the operating, or emissive, wavelength of the device, said whole number being one of the numbers ranging from 1 to 5, the fundamental mode of the cavity being in resonance with the emission wavelength of said selected rare earth element. Cavity-quality factors exceeding Q=300 and finesses of 73 are achieved with structures consisting of two Si/SiO.sub.2 distributed Bragg reflector (DBR) mirrors and an Er-implanted (.lambda./2) SiO.sub.2 active region. The bottom DBR mirror consists of four pairs and the upper DBR mirror consists of two-and-a half pairs of quarterwave (.lambda./4) layers of Si and SiO.sub.2. Photoluminescence at room temperature reveals a drastic enhancement of the luminescence intensity of the cavity emitted along the optical axis of the cavity versus the luminescence without the top mirror. The luminescence intensity of the cavity is typically 1-2 orders of magnitudes higher as compared to structures without a cavity. Furthermore, since the emission wavelength and the intensity decrease for off-normal emission angles, the change in emission wavelength can be quantitatively described by assuming that the on-axis component of the optical wave is resonant with the cavity.
摘要:
An optoelectronic lII-V or II-VI semiconductor device comprises a thin film coating with optical characteristics providing low midgap interface state density. A field effect device for inversion channel applications on III-V semiconductors also comprises a thin dielectric film providing required interface characteristics. The thin film is also applicable to passivation of states on exposed surfaces of electronic III-V devices. The thin film comprises a uniform, homogeneous, dense, stoichiometric gallium oxide (Ga.sub.2 O.sub.3) dielectric thin film, fabricated by electron-beam evaporation of a single crystal, high purity Gd.sub.3 Ga.sub.5 O.sub.12 complex compound on semiconductor substrates kept at temperatures ranging from 40.degree. to 370.degree. C. and at background pressures at or above 1.times.10.sup.-10 Torr.
摘要翻译:光电子II-V或II-VI半导体器件包括具有提供低中间界面态密度的光学特性的薄膜涂层。 用于III-V半导体上的反向沟道应用的场效应器件还包括提供所需接口特性的薄电介质膜。 薄膜也适用于电子III-V器件暴露表面的状态钝化。 该薄膜包括均匀,均匀,致密的化学计量的氧化镓(Ga 2 O 3)电介质薄膜,其通过在保持在40℃至370℃的温度范围内的半导体衬底上的单晶,高纯度Gd 3 Ga 5 O 12络合物的电子束蒸发 在背景压力为1×10-10乇或以上。
摘要:
Described is a resonant-cavity p-i-n photodetector based on the reflection or transmission through a Fabry-Perot cavity incorporating non-epitaxial, amorphous layers with alternating refractive index difference which layers are electron-beam deposited on a light-gathering side of a commercially available photodetector. The materials of the Fabry-Perot cavity are selectable from materials, refractive indices of which fall within a large range (from n=1.26 for CaF.sub.2 to n=3.5 for Si) preferably from materials which are depositable in an amorphous state. The material combinations are selected so that only wavelengths resonant with the cavity mode will be detected. The microcavity of the RC-PIN design can also be deposited on any existing detector structure, without modification of semiconductor growth. Such a photodetector would be useful for wavelength de-multiplexing applications. The ease of layer deposition, as well as the high degree of tailorability of spectral position, spectral detection width, and maximum numerical aperture of efficient detection, make the RC-PIN attractive for use in wavelength demultiplexing applications. An exemplary RC-PIN photodetector includes a Si/SiO.sub.2 Fabry-Perot cavity electron-beam deposited on the InP substrate of a commercial InGaAs photodetector. The detection efficiency relative to a reference device was 52 percent at the resonant wavelength of 1350 nm, with a resonance width of 14 nm, and a 4 percent response for off-resonance wavelengths in the 1100-1700 nm range.