Abstract:
The present application provides a hybrid running track article, comprising, from top to bottom: (I) a top coating layer made from a first composition comprising an externally emulsified polyurethane dispersion and rubber particles, wherein the externally emulsified polyurethane dispersion is derived from: (Ai) an isocyanate component comprising one or more compounds having at least two isocyanate groups, (Bi) an isocyanate-reactive component comprising one or more compounds having at least two isocyanate-reactive groups; (Ci) an optional catalyst, (Di) an external emulsifier, (Ei) a chain extender and (Fi) water, and (II) a bottom layer made from a second composition comprising a 1K solvent-free polyurethane binder and rubber particles.
Abstract:
A non-solvent two-component polyurethane artificial leather composition is provided. The polyurethane composition comprises (A) a polyurethane-prepolymer component, comprising one or more polyurethane-prepolymers prepared by reacting at least one polyisocyanate compound with at least one first polyol, wherein the polyurethane-prepolymer comprises at least two free isocyanate groups; and (B) a polyol component, comprising at least one second polyol; wherein the polyol component further comprises an encapsulated foaming agent comprising at least one foaming core phase encapsulated within an outer shell. The polyurethane leather product derived from the polyurethane composition exhibits enhanced stability, mild bubble generation and improved cost effectiveness. A polyurethane leather product prepared with said composition and the method for preparing the same are also provided.
Abstract:
A waterborne polyurethane dispersion is provided. The waterborne polyurethane dispersion is prepared by using a tri-functionality polyether polyol as part of the polyols for forming the prepolymer and a hydrophilic amino siloxane co-chain extender, and can exhibit superior performance properties such as enhanced color fastness, improved low temperature stability, good anti-stickiness, bally flex resistance, anti-abrasion and mechanical properties. A laminated synthetic leather article prepared with said waterborne polyurethane dispersion as well the method for preparing the synthetic leather article are also provided.
Abstract:
Provided is a waterborne polyurethane dispersion. The waterborne polyurethane dispersion is prepared in the presence of a hydrophilic amino siloxane compound and exhibits good anti-stickiness while retaining superior mechanical properties. A laminated synthetic leather article prepared with said waterborne polyurethane dispersion as well the method for preparing the synthetic leather article are also provided.
Abstract:
A synthetic leather article comprising a top coating derived from externally emulsified PUD and a 2K non-solvent PU foam is provided. The leather article exhibits high delamination resistance while retaining superior mechanical properties and appearance comparable with those derived from the organic solvent-based PU. A method for preparing the synthetic leather article is also provided.
Abstract:
A transparent pressure sensing film is provided having a matrix polymer; and, a plurality of hybrid particles; wherein the plurality of hybrid particles are disposed in the matrix polymer; wherein each hybrid particle in the plurality of hybrid particles, comprises a plurality of primary particles bonded together with an inorganic binder; wherein an electrical resistivity of the transparent pressure sensing film is variable in response to an applied pressure having a z-component directed along the thickness of the transparent pressure sensing film such that the electrical resistivity is reduced in response to the z-component of the applied pressure.
Abstract:
A composite transparent pressure sensing film is provided having a matrix polymer wherein the matrix polymer is a combination of 25 to 75 wt % of an alkyl cellulose and 75 to 25 wt % of a polysiloxane; and, a plurality of hybrid particles, wherein each hybrid particle in the plurality of hybrid particles, comprises a plurality of primary particles bonded together with an inorganic binder; wherein the plurality of hybrid particles are disposed in the matrix polymer; wherein an electrical resistivity of the composite transparent pressure sensing film is variable in response to an applied pressure having a z-component directed along the thickness of the composite transparent pressure sensing film such that the electrical resistivity is reduced in response to the z-component of the applied pressure.
Abstract:
Disclosed herein are synthetic leathers comprising latex, and having improved peel strength and/or improved embossability. The leathers comprising a fabric that is optionally impregnated with a polymer resin, wherein the fabric is in contact with a polymeric layer that was made from a mixture comprising a frothed polyurethane dispersion in water and latex. Methods of making these synthetic leathers, which have improved peel strength and/or improved embossability relative to non-latex containing synthetic leathers, are also disclosed.
Abstract:
A waterborne polyurethane dispersion is provided. The waterborne polyurethane dispersion is prepared by using a tri-functionality polyether polyol as part of the polyols for forming the prepolymer and a hydrophilic amino siloxane co-chain extender, and can exhibit superior performance properties such as enhanced color fastness, improved low temperature stability, good anti-stickiness, bally flex resistance, anti-abrasion and mechanical properties. A laminated synthetic leather article prepared with said waterborne polyurethane dispersion as well the method for preparing the synthetic leather article are also provided.
Abstract:
An aqueous polyurethane dispersion compositions are disclosed. The compositions include a polyurethane prepolymer dispersed in an aqueous medium, the polyurethane prepolymer comprising an isocyanate and a crystalline polyester polyol having a hydroxyl content of 20 to 150 mg KOH/g and a melt temperature of less than or equal to 90° C. Methods of forming a laminate are also disclosed. The methods include providing an aqueous polyurethane dispersion, applying the polyurethane dispersion to a surface of the first substrate, bringing the side of the first substrate into contract with a surface of the second substrate, and curing the aqueous dispersion, thereby laminating the first substrate to the second substrate. Laminates formed by the methods and including the compositions are also disclosed.