Abstract:
A interconnect assembly features a prefabricated interconnect structure metallurgically bonded to a terminal of a larger structure. Fabrication of the interconnect structure's independently and seperate from the larger structure enables the use of economic mass fabrication techniques that are well-known for miniature scale sheet metal parts. During fabrication, positioning and attachment, each interconnect structure is combined with and/or held in a carrier structure from which it is separated after attachment to the terminal. The interconnect structure is configured such that an attachment tool may be brought into close proximity to the attachment interface between the interconnect structure and the terminal for a short and direct transmission of bonding energy onto the attachment interface. The attachment interface provides for an electrically conductive and a bending stress opposing mechanical connection between the interconnect structure and the terminal. The interconnect assembly is preferably part of a probe apparatus.
Abstract:
A wire bonding machine for bonding a wire to a semiconductor device. The wire bonding machine includes a wire bonding head having a bonding tool mounted to it. The bonding tool is adapted to attach a wire end to a semiconductor device. A bonding head conveyance system translates the bonding tool in a vertical direction and translates the bonding tool along a first horizontal axis. A work table supports at least one semiconductor device to be wire bonded. A work table conveyance system translates the semiconductor device along a second horizontal axis.
Abstract:
A wire bonding system for attaching a wire between bonding pads on a semiconductor device and a substrate. The wire bonding system includes a frame and a bonding head attached to the frame and adapted to attach a wire between bonding pads on a semiconductor device and a substrate. The wire bonding system also includes a laser cleaning mechanism mounted to the frame, the laser cleaning mechanism including a laser for emitting laser light adapted to irradiate contaminants on a bonding pad, the laser mechanism located on the frame so as to emit light onto a bonding pad of at least one of the semiconductor device and the substrate prior to the bonding head attaching the wire thereto.
Abstract:
A blade probe card includes a plurality of blades that each includes a first end connected to a printed circuit board and a second end. A probe member is attached to the second end of each blade and extends outward to make contact with a device under test. A ground member is attached to the second end of each blade. The blade probe card also includes a common ground member that is separate from the printed circuit board and coupled to the ground member of each blade. Each blade may also include a first conductive signal trace and two or more conductive ground traces formed on a surface of each blade. The first conductive signal trace electrically connects the probe member to a contact on the printed circuit board. The two or more conductive ground traces are adjacent to the conductive signal trace and reduce crosstalk between the blades.
Abstract:
A motion control device for controlling rotary and linear motion which includes a first linear actuator having a first fixed member and a first moveable drive member, the first moveable drive member being driven for motion relative to the first fixed member along a first longitudinal axis. The device also includes a second linear actuator having a second fixed member and a second moveable drive member, the second movable drive member being driven for motion relative to the second fixed member along a second longitudinal axis. A drive assembly is configured to be driven by the first and second moveable drive members for (a) linear motion along an axis substantially parallel to the first and second longitudinal axes, and (b) rotation about an axis of rotation. A position of each of the moveable drive members is separately controllable to control rotational and linear positions of the drive assembly.
Abstract:
A method of processing a probe element includes (a) providing a probe element comprising a first conductive material, and (b) coating only a tip portion of the probe element with a second conductive material.
Abstract:
A system for determining wire bonding tool placement for use with a wire bonder and an optical imager is provided. The system includes a prism disposed below the optical imager and the wire bonding tool. The system also includes at least one lens positioned between the prism and a lower portion of the wire bonding tool along a first optical axis. The at least one lens and the prism define an object plane between the at least one lens and the lower portion of the wire bonding tool. The at least one lens is positioned between the prism and the optical imager along a second optical axis. The at least one lens and the prism define an image plane between the at least one lens and the optical imager.
Abstract:
A method of processing a semiconductor wafer including a plurality of semiconductor dies is provided. The method includes providing a semiconductor wafer including a plurality of semiconductor dies, at least a portion of the semiconductor dies including contact pads for testing the respective semiconductor die. The method also includes positioning conductive bumps on the contact pads prior to completing wafer testing of the semiconductor wafer and prior to the singulation of the plurality of semiconductor dies from the semiconductor wafer. At least a portion of the conductive bumps are configured to be electrical paths during wafer testing of the semiconductor wafer.