摘要:
A raw material feeding device for feeding a gaseous raw material formed by sublimating a solid raw material to a film formation system includes a raw material container for holding the solid raw material therein, a first heating unit placed at a first side of the container, a second heating unit placed at a second side thereof, the first temperature control unit for conducting a first process of controlling the first and the second heating unit to make the temperature of the first side higher than that of the second side to thereby sublimate the solid raw material disposed at the first side, and the second temperature control unit for conducting a second process of controlling the first and the second heating unit to make the temperature of the second side higher than that of the first side to thereby sublimate the solid raw material disposed at the second side.
摘要:
A semiconductor substrate is placed in a predetermined processing vessel, and oxygen gas activated by, e.g. conversion into a plasma is supplied onto an insulating film. The surfaces of an interlevel insulating film and insulating film are exposed to the activated oxygen gas. After that, a transition metal film, e.g. a ruthenium film, is formed by CVD.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process includes introducing a process gas containing a metal carbonyl precursor in a process chamber and depositing a metal layer on a substrate. The TCVD process utilizes a short residence time for the gaseous species in the processing zone above the substrate to form a low-resistivity metal layer. In one embodiment of the invention, the metal carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12 precursors. In another embodiment of the invention, a method is provided for depositing low-resistivity W layers at substrate temperatures below about 500° C., by utilizing a residence time less than about 120 msec.
摘要:
A method of forming a metal film using a metal carbonyl compound as a material is disclosed that includes the steps of: (a) introducing a reactive gas into a space near a surface of a substrate to be processed; and (b) introducing a gaseous phase material including the metal carbonyl compound into the space on the surface of the substrate to be processed, and depositing the metal film on the surface of the substrate to be processed after step (a). Step (a) is executed in such a manner as to prevent substantial deposition of the metal film on the substrate to be processed.
摘要:
The present invention provides a CVD apparatus and a CVD method for use in forming an Al/Cu multilayered film. The Al/Cu multilayered film is formed in the CVD apparatus comprising a chamber for placing a semiconductor wafer W, a susceptor for mounting the semiconductor wafer W thereon, an Al raw material supply system for introducing a gasified Al raw material into the chamber and a Cu raw material supply system for introducing a gasified Cu raw material into the chamber. The Al/Cu multilayered film is formed by repeating a series of steps consisting of introducing the Al raw material gas into the chamber, depositing the Al film on the semiconductor wafer W by a CVD method, followed by generating a plasma in the chamber in which the Cu raw material gas has been introduced and depositing the Cu film on the semiconductor wafer W by a CVD method. The Al/Cu multilayered film thus obtained is subjected to a heating treatment (annealing), thereby forming a desired Al/Cu multilayered film.
摘要:
A substrate is disposed in a processing chamber. An organic Ta compound gas having Ta═N bond, a Si-containing gas and a N-containing gas are introduced into the processing chamber to form a TaSiN film on the substrate by CVD. In this film formation, at least one of a partial pressure of the Si-containing gas in the processing chamber, a total pressure in the processing chamber, a film forming temperature and a partial pressure of the N-containing gas in the processing chamber is controlled to thereby regulate Si concentration in the film. Particularly, when SiH4 gas is used as the Si-containing gas, the SiH4 gas partial pressure is determined based on the fact that the serried Si concentration in the film under giving process conditions can be expressed as a linear function involving the logarithm of the partial pressure of the SiH4 gas.
摘要:
The present invention relates to a method and apparatus for forming a thin film using the ALD process. Prior to the ALD process where each of a plurality of source gasses is supplied one by one, plural times, a pretreatment process is performed in which the source gasses are simultaneously supplied to shorten an incubation period and improve throughput.
摘要:
A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
摘要:
On a Si substrate 1, i.e., a semiconductor substrate, a gate insulating film 2 is formed, and then a W-based film 3a is formed on the gate insulating film 2 by CVD using a film forming gas including W(CO)6 gas. Then, the film is oxidized under existence of a reducing gas, and the W in the W-based film 3a is not oxidized but only C is selectively oxidized to reduce the concentration of C contained in the W-based film 3a. Then, after performing heat treatment as needed, resist coating, patterning, etching and the like are performed, and, an impurity diffused region 10 is formed by ion implantation and the like, and a semiconductor device having a MOS structure is formed.
摘要:
The present invention is a method of film deposition that comprises a film-depositing step of supplying a high-melting-point organometallic material gas and a nitrogen-containing gas to a processing vessel that can be evacuated, so as to deposit a thin film of a metallic compound of a high-melting-point metal on a surface of an object to be processed placed in the processing vessel. A partial pressure of the nitrogen-containing gas during the film-depositing step is 17% or lower, in order to increase carbon density contained in the thin film.