Abstract:
An apparatus of a base station includes a memory device and processing circuitry operatively coupled to the memory device. The processing circuitry processes a buffer status report (BSR) from a user equipment (UE) indicating an amount of data in a buffer of the UE. The processing circuitry further determines a ratio of WLAN uplink data to be transmitted on a WLAN channel of the UE to long term evolution (LTE) uplink data to be transmitted on a LTE channel. Furthermore, the processing circuitry encodes a protocol data unit (PDU) indicating the amount, wherein the PDU is to be transmitted to the UE.
Abstract:
Techniques for 60 GHz long term evolution (LTE)-wireless local area network (WLAN) aggregation (LWA) for keeping a 60 GHz channel alive for fifth generation (5G) and beyond are discussed herein. An apparatus of a 5G/long term evolution (LTE) evolved NodeB (eNB) is connected to a 60 GHz access point (AP) via an Xw interface, and has a baseband circuit with one or more baseband processors. The baseband circuit encodes one or more measurement events, wherein upon receipt by a user equipment (UE) sets a trigger to measure a 60 GHz access point.
Abstract:
A technology for a user equipment (UE) in a multiple radio access technology (multi-RAT) heterogeneous network (HetNet) that is operable to receive node-selection pricing information from a plurality of nodes in the multi-RAT HetNet. Effective normalized rate can be determined for the plurality of nodes in the multi-RAT HetNet using the node-selection pricing information. A node can be selected to communicate with in the multi-RAT HetNet to maximize a selected preference based on the effective normalized rate.
Abstract:
Technology for a user equipment (UE) to communicate in a multiple radio access technology (multi-RAT) heterogeneous network (HetNet) is described. A radio-link-selection hysteresis threshold can be determined at the UE for a radio link between the UE and a node in the multi-RAT HetNet. A reliability value of a throughput estimate can be measured for the radio link in the multi-RAT HetNet. The radio-link-selection hysteresis threshold can be adjusted at the UE based on the reliability value to increase network stability in the multi-RAT HetNet.
Abstract:
Embodiments of the present disclosure are directed towards devices and methods for identifying preferred access networks based at least in part on access network information including access network assistance information, steering policies, or access commands. In some embodiments, conflicts between access network information and access network discovery and selection function (ANDSF) policies may be rectified in identifying a preferred access network.
Abstract:
An embodiment of a method for user equipment feedback of performance metrics during dynamic radio switching is disclosed. The method may include the UE receiving an indication to switch from a first radio associated with a first radio access technology (RAT) of a communication system to a second radio associated with a second RAT of the communication system. The UE transmits the performance metrics to the second radio and switches from a first radio of the plurality of radios to a second radio of the plurality of radios, the first radio associated with the first RAT and the second radio associated with the second RAT.
Abstract:
Technology for a user equipment (UE) to perform long-term evolution (LTE) and Wireless local area network (WLAN) aggregation (LWA) connection procedures within a wireless communication network is disclosed. The UE can determine to suspend communication on a wireless local area network (WLAN) of one or more protocol data units (PDUs) for a LWA session without terminating the LWA session. The UE can process, for transmission to an eNodeB, a request to suspend communication of the one or more PDUs on the WLAN to enable the eNodeB to schedule the one or more PDUs for transmission to the UE through a cellular interface without terminating the LWA session.
Abstract:
Wireless communication traffic can be offloaded from a user equipment (UE) to two wireless points of access. For example, user equipment (UE) is connected to a radio access network (RAN) using a radio access technology (RAT) such as a long term evolution (LTE) network. The UE can determine which network capabilities are available for traffic offloading and adapt to the capabilities presented. In one embodiment, the UE can determine whether the network supports three different configurations and configure traffic offloading to operate within the network conditions: (1) RAN rules without access network detection and selection function (ANDSF), (2) ANDSF in conjunction with RAN rules or (3) enhanced ANDSF with RAN assistance.
Abstract:
Briefly, in accordance with one or more embodiments, an apparatus of user equipment (UE) comprises circuitry to receive data transmissions as packet data convergence protocol (PDCP) packets from a radio bearer via two or more Radio Access Technologies (RATs). One or more PDCP packets are offloaded from a first RAT to a second RAT. The apparatus comprises circuitry to aggregate the received data PDCP packets, and report a status of the PDCP packets to the radio bearer.
Abstract:
A network device (e.g., an evolved Node B (eNB), user equipment (UE) or the like) can operate wireless local area network (WLAN) mobility between groups of WLAN access points (APs) in LTE/WLAN aggregation based on control by the eNB and further between WLAP APs within a particular group based on control by the UE. A long term evolution (LTE) link can communicate a first set of WLAN data related to a first set of WLAN access points (APs) that enables the UE to generate a WLAN mobility operation from a first WLAN AP to a second WLAN AP within the first set of WLAN APs based on a determination generated by the UE. The UE can be prompted by the eNB to also select another WLAN AP of the second set of WLAN APs coupled to a different WLAN Termination or logic node.