摘要:
A user equipment (UE) is configured to receive a maximum probability of accessing a wireless local area network (WLAN) for communication. The maximum probability is received via a 3rd Generation Partnership Project (3GPP) communication link with an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). The UE is further configured to determine that there is a queued transmission for the UE and, in response to determining that there is a queued transmission, to determine whether the UE is authorized to access to the WLAN using a probability less than or equal to the maximum probability. The UE is further configured to delay contention for access to the WLAN for at least a pre-backoff duration in response to determining that the UE is not authorized.
摘要:
Systems and methods for bearer splitting among multiple radio links are disclosed herein. User equipment (UE) may be communicatively coupled to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB) by multiple radio links (e.g., an LTE link and a WLAN link). A transmitter may dynamically determine a splitting policy for how to split traffic among each link (e.g., what proportion to send over each link). In some embodiments, the transmitter may determine the splitting policy explicitly based on lower layer metrics. Alternatively, or in addition, each radio access interface may request data when a transmission opportunity becomes available, and the splitting policy may be determined implicitly from the data requests. For a UE, the splitting policy may be determined with network assistance, which may include a resource allocation for an LTE link, a probability of successful transmission over a WLAN link, and/or the like.
摘要:
A technology for a user equipment (UE) in a multiple radio access technology (multi-RAT) heterogeneous network (HetNet) that is operable to receive node-selection pricing information from a plurality of nodes in the multi-RAT HetNet. Effective normalized rate can be determined for the plurality of nodes in the multi-RAT HetNet using the node-selection pricing information. A node can be selected to communicate with in the multi-RAT HetNet to maximize a selected preference based on the effective normalized rate.
摘要:
Technology for a user equipment (UE) to communicate in a multiple radio access technology (multi-RAT) heterogeneous network (HetNet) is described. A radio-link-selection hysteresis threshold can be determined at the UE for a radio link between the UE and a node in the multi-RAT HetNet. A reliability value of a throughput estimate can be measured for the radio link in the multi-RAT HetNet. The radio-link-selection hysteresis threshold can be adjusted at the UE based on the reliability value to increase network stability in the multi-RAT HetNet.
摘要:
An embodiment of a method for user equipment feedback of performance metrics during dynamic radio switching is disclosed. The method may include the UE receiving an indication to switch from a first radio associated with a first radio access technology (RAT) of a communication system to a second radio associated with a second RAT of the communication system. The UE transmits the performance metrics to the second radio and switches from a first radio of the plurality of radios to a second radio of the plurality of radios, the first radio associated with the first RAT and the second radio associated with the second RAT.
摘要:
Briefly, in accordance with one or more embodiments, an apparatus of user equipment (UE) comprises circuitry to receive data transmissions as packet data convergence protocol (PDCP) packets from a radio bearer via two or more Radio Access Technologies (RATs). One or more PDCP packets are offloaded from a first RAT to a second RAT. The apparatus comprises circuitry to aggregate the received data PDCP packets, and report a status of the PDCP packets to the radio bearer.
摘要:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for control of a heterogeneous wireless network. Embodiments described may improve upon one or more utility metrics of the heterogeneous network. Other embodiments may be described and claimed.
摘要:
A technology for a user equipment (UE) is disclosed that is operable in an anchor-booster architecture of a multiple radio access technology (multi-RAT) heterogeneous network (HetNet). Control information to an anchor cell can be transmitted from a wireless wide area network (WWAN) node in the multi-RAT UE. Data packets of the multi-RAT UE can be selected for transmission via one of the WWAN node and a wireless local area network (WLAN) node in the multi-RAT UE using a multi-RAT coordination function (MRCF) module. Each data packet from one of the WWAN node and the WLAN cell can be transmitted to a multi-RAT small cell evolved node B (SC-eNode B) based on the selection by the MRCF module.
摘要:
A User Equipment is disclosed that is configured to perform traffic steering from a RAN (e.g., 3GPP system) to a WLAN, or vice versa, based on one or more rules. In an embodiment, the UE performs the traffic steering to the WLAN based on whether data is to be transmitted from or received by the UE. In another embodiment, the UE performs the traffic steering based on receipt of RAN assistance parameters without checking the status of the UE upload buffers or the eNB/AP download buffers. In yet another embodiment, the UE performs the traffic steering based on the latest RAN assistance information and a time elapsed since the last transmission or receipt of data.
摘要:
A User Equipment is disclosed that is configured to perform traffic steering from a RAN (e.g., 3GPP system) to a WLAN, or vice versa, based on one or more rules. In an embodiment, the UE performs the traffic steering to the WLAN based on whether data is to be transmitted from or received by the UE. In another embodiment, the UE performs the traffic steering based on receipt of RAN assistance parameters without checking the status of the UE upload buffers or the eNB/AP download buffers. In yet another embodiment, the UE performs the traffic steering based on the latest RAN assistance information and a time elapsed since the last transmission or receipt of data.