Abstract:
A chip arrangement includes semiconductor chips coupled to opposing sides of an insulating layer. The arrangement includes a first semiconductor chip having a first chip surface presenting a first chip conductive region. An electrically insulating layer includes a first layer surface presenting a first layer conductive region, and a second, opposing surface presenting a second layer conductive region. The electrically insulating layer is coupled to the first semiconductor chip by applying the first layer conductive region to the first chip conductive region. The electrically insulating layer is then coupled to the second chip conductive region by applying the second layer conductive region to the second chip conductive region.
Abstract:
A method for fabricating semiconductor packages includes providing a first substrate having an aperture, providing a first semiconductor chip, connecting the first semiconductor chip to the first substrate, filling the aperture with a first insulating material and encapsulating the semiconductor chip with a second insulating material to create a first encapsulation body.
Abstract:
A method for fabricating an electronic device includes providing a first semiconductor chip and a second semiconductor chip. The first semiconductor chip has a first semiconductor die and a first solder interconnect layer applied to a main face of the first semiconductor die. The second semiconductor chip has a second semiconductor die, an insulating layer applied to a main face of the second semiconductor die, and a second solder interconnect layer applied to the insulating layer. The method further includes attaching the first semiconductor chip with the first solder interconnect layer to a first carrier and attaching the second semiconductor chip with the second solder interconnect layer to a second carrier.
Abstract:
A method for manipulating ions contained in an encapsulation material for a semiconductor device is provided. The method includes processing the encapsulation material and applying an electric field to the encapsulation material before the encapsulation material is finally cured. The ions contained in the encapsulation material have a mobility that decreases as the encapsulation material cures. By applying the electric field to the encapsulation material before the encapsulation material is finally cured, the amount of ions contained in the encapsulation material is reduced and/or the ions contained are concentrated in one or more regions of the encapsulation material. Corresponding apparatuses and semiconductor packages manufactured by the method are also described.
Abstract:
In various embodiments, a chip package is provided. The chip package may include a chip, a metal contact structure including a non-noble metal and electrically contacting the chip, a packaging material, and a protective layer including or essentially consisting of a portion formed at an interface between a portion of the metal contact structure and the packaging material, wherein the protective layer may include a noble metal, wherein the portion of the protective layer may include a plurality of regions free from the noble metal, and wherein the regions free from the noble metal may provide an interface between the packaging material and the non-noble metal of the metal contact structure.
Abstract:
In various embodiments, a method of forming an electrical contact is provided. The method may include depositing, by atomic layer deposition, a passivation layer over at least a region of a metal surface, wherein the passivation layer may include aluminum oxide, and electrically contacting the region of the metal surface with a metal contact structure, wherein the metal contact structure may include copper.
Abstract:
In various embodiments, methods for forming a chip package are provided. The chip package may include a chip comprising a chip metal surface, a metal contact structure electrically contacting the chip metal surface, a packaging material at least partially encapsulating the chip and the metal contact structure, and a chemical compound physically contacting the packaging material and at least one of the chip metal surface and the metal contact structure, wherein the chemical compound may be configured to improve an adhesion between the metal contact structure and the packaging material and/or between the chip metal surface and the packaging material, as compared with an adhesion in an arrangement without the chemical compound, wherein the chemical compound is essentially free from functional groups comprising sulfur, selenium or tellurium.
Abstract:
In various embodiments, a chip package is provided. The chip package may include a chip including a chip metal surface, a metal contact structure electrically contacting the chip metal surface, and packaging material including a contact layer being in physical contact with the chip metal surface and/or with the metal contact structure; wherein at least in the contact layer of the packaging material, a summed concentration of chemically reactive sulfur, chemically reactive selenium and chemically reactive tellurium is less than 10 atomic parts per million.
Abstract:
A chip package is provided, the chip package including: a chip carrier; a chip disposed over and electrically connected to a chip carrier top side; an electrically insulating material disposed over and at least partially surrounding the chip; one or more electrically conductive contact regions formed over the electrically insulating material and in electrical connection with the chip; a further electrically insulating material disposed over a chip carrier bottom side; wherein an electrically conductive contact region on the chip carrier bottom side is released from the further electrically insulating material.
Abstract:
A semiconductor component including a stack of semiconductor chips, the semiconductor chips being fixed cohesively one on top of another, is disclosed. The contact areas of the semiconductor chips are led as far as the edges of the semiconductor chips and conductor portions extend at least from an upper edge to a lower edge of the edge sides of the semiconductor chips in order to electrically connect the contact area of the stacked semiconductor chips to one another.