Abstract:
A user equipment device comprises physical layer circuitry configured to communicate radio frequency (RF) electrical signals directly with one or more separate wireless devices, including to receive an indication of multiple component carriers aggregated into a carrier set that includes at least one scheduling component carrier and at least one scheduled component carrier, and receive scheduling control information for the multiple component carriers of the carrier set using the scheduling component carrier in downlink control information according to a resource radio control signaling protocol.
Abstract:
Generally, this disclosure provides apparatus and methods for improved control channel monitoring in a New Carrier Type (NCT) wireless network. A User Equipment (UE) device may include a receiver circuit to receive a Multicast/Broadcast over Single Frequency Network (MBSFN) for Physical Multicast Channel (P-MCH) transmission from an evolved Node B (eNB); an MBSFN for P-MCH detection module to detect and extract an enhanced physical downlink control channel (EPDCCH) signal from the MBSFN subframe for P-MCH transmission; and an EPDCCH monitor module to decode and monitor the extracted EPDCCH signal.
Abstract:
Embodiments of an eNB and method for supporting communication with UEs on an LTE network in an unlicensed frequency band are generally described herein. The eNB may be configured to transmit a first LTE signal that includes a first reference signal during an active transmission period of a Wi-Fi network in the unlicensed frequency band, and to restrict frequency spectra used for the transmission of the first LTE signal from frequency spectra used by the Wi-Fi network during the active transmission period. The first reference signal may enable maintenance of synchronization between the eNB and the UEs at least during the active transmission period. The eNB may be further configured to transmit a second LTE signal during a silence period of the Wi-Fi network in frequency spectra used by the Wi-Fi network during the active transmission period.
Abstract:
Technology for selecting physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) is disclosed. In an example, device operable in an evolved Node B (eNB) to select physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) can include computer circuitry configured to: Determine a frequency bandwidth for the NCT; and select a CRS pattern of PRBs for a transmission of the CRS in the frequency bandwidth, wherein the frequency bandwidth includes PRBs with CRS and PRBs without CRS.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for transmitting periodic channel state information having large payload sizes. Other embodiments may be described and claimed.
Abstract:
Technology is discussed for supporting the incorporation of a Primary Synchronization Signal (PSS) and/or a Secondary Synchronization Signal (SSS) within in a New Carrier Type (NCT) for a Component Carrier (CC). Guidelines for incorporating the PSS and/or the SSS in the NCT are discovered, together with potential collisions with other signals that can be avoided for various scenarios. In some examples, various guidelines and potential collisions discovered herein, for various scenarios, inform approaches to incorporating the PSS and/or the SSS based on the positioning of the PSS and/or the SSS. In other examples, other signals, such as DeModulation Reference Symbols (DMRS) are reconfigured to allow incorporation of the PSS and the SSS.
Abstract:
Technology for selecting physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) is disclosed. In an example, device operable in an evolved Node B (eNB) to select physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) can include computer circuitry configured to: Determine a frequency bandwidth for the NCT; and select a CRS pattern of PRBs for a transmission of the CRS in the frequency bandwidth, wherein the frequency bandwidth includes PRBs with CRS and PRBs without CRS.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for multiplexing channel state information and hybrid automatic repeat request-acknowledgement information. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for multiplexing channel state information and hybrid automatic repeat request-acknowledgement information. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for multiplexing channel state information and hybrid automatic repeat request-acknowledgement information. Other embodiments may be described and claimed.