Abstract:
Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxide layer is formed over the transparent substrate. The metal oxide layer includes a first element, a second element, and a third element. A reflective layer is formed over the transparent substrate. The first element may include tin or zinc. The second element and the third element may each include tin, zinc, antimony, silicon, strontium, titanium, niobium, zirconium, magnesium, aluminum, yttrium, lanthanum, hafnium, or bismuth. The metal oxide layer may also include nitrogen.
Abstract:
Embodiments provided herein describe methods for forming cadmium-manganese-telluride (CMT), such as for use in photovoltaic devices. A substrate including a material with a zinc blende crystalline structure is provided. CMT is formed above the substrate. During the formation of the CMT, cation-rich processing conditions are maintained. The resulting CMT may be more readily provided with p-type dopants when compared to conventionally-formed CMT.
Abstract:
Embodiments of the current invention describe a method of plating platinum selectively on a copper film using a self-initiated electroless process. In particular, platinum films are plated onto very thin copper films having a thickness of less than 300 angstroms. The electroless plating solution and the resulting structure are also described. This process has applications in the semiconductor processing of logic devices, memory devices, and photovoltaic devices.
Abstract:
Provided are methods of high productivity combinatorial (HPC) inspection of semiconductor substrates. A substrate includes two layers of dissimilar materials interfacing each other, such as a stack of a silicon bottom layer and an indium gallium arsenide top layer. The dissimilar materials have one or more of thermal, structural, and lattice mismatches. As a part of the inspection, the top layer is etched in a combinatorial manner. Specifically, the top layer is divided into multiple different site-isolated regions. One such region may be etched using different process conditions from another region. Specifically, etching temperature, etching duration and/or etchant composition may vary among the site-isolated regions. After combinatorial etching, each region is inspected to determine its etch-pit density (EPD) value. These values may be then analyzed to determine an overall EPD value for the substrate, which may involve discarding EPD values for over-etched and under-etched regions.
Abstract:
A method for forming boron oxide films formed using reactive sputtering. The boron oxide films are candidates as an anti-reflection coating. Boron oxide films with a refractive index of about 1.38 can be formed. The boron oxide films can be formed using power densities between 2 W/cm2 and 11 W/cm2 applied to the target. The oxygen in the reactive sputtering atmosphere can be between 40 volume % and 90 volume %.
Abstract translation:一种用反应溅射形成氧化硼膜的方法。 氧化硼膜是抗反射涂层的候选物。 可以形成折射率为约1.38的氧化硼膜。 可以使用施加到目标的2W / cm 2和11W / cm 2之间的功率密度来形成氧化硼膜。 反应性溅射气氛中的氧可以在40体积%至90体积%之间。
Abstract:
A method for forming boron oxide films formed using reactive sputtering. The boron oxide films are candidates as an anti-reflection coating. Boron oxide films with a refractive index of about 1.38 can be formed. The boron oxide films can be formed using power densities between 2 W/cm2 and 11 W/cm2 applied to the target. The oxygen in the reactive sputtering atmosphere can be between 40 volume % and 90 volume %.
Abstract translation:一种用反应溅射形成氧化硼膜的方法。 氧化硼膜是抗反射涂层的候选物。 可以形成折射率为约1.38的氧化硼膜。 可以使用施加到目标的2W / cm 2和11W / cm 2之间的功率密度来形成氧化硼膜。 反应性溅射气氛中的氧可以在40体积%至90体积%之间。
Abstract:
A method for forming copper indium gallium (sulfide) selenide (CIGS) solar cells, cadmium telluride (CdTe) solar cells, and copper zinc tin (sulfide) selenide (CZTS) solar cells using laser annealing techniques to anneal the absorber and/or the buffer layers. Laser annealing may result in better crystallinity, lower surface roughness, larger grain size, better compositional homogeneity, a decrease in recombination centers, and increased densification. Additionally, laser annealing may result in the formation of non-equilibrium phases with beneficial results.