摘要:
Numerous embodiments of a stacked device underfill and a method of formation are disclosed. In one embodiment, a method of forming stacked semiconductor device with an underfill comprises forming one or more layers of compliant material on at least a portion of the top surface of a substrate, said substrate, curing at least a portion of the semiconductor device, selectively removing a portion of the one or more layers of compliant material, and assembling the substrate into a stacked semiconductor device.
摘要:
Carborane may be used as a precursor to form low dielectric constant dielectrics. The carborane material may be modified to enable it to be deposited by chemical vapor deposition.
摘要:
Numerous embodiments of a stacked device underfill and a method of formation are disclosed. In one embodiment, a method of forming stacked semiconductor device with an underfill comprises forming one or more layers of compliant material on at least a portion of the top surface of a substrate, said substrate, curing at least a portion of the semiconductor device, selectively removing a portion of the one or more layer of complaint material, and assembling the substrate into a stacked semiconductor device.
摘要:
A dielectric layer is made porous by treating the dielectric material after metal interconnects are formed in or through that layer. The porosity lowers the dielectric constant of the dielectric material. The dielectric material may be subjected to an electron beam or a sonication bath to create the pores. The structure has smooth sidewalls for metal interconnects extending through the dielectric layer.
摘要:
An absorbing composition is described herein that includes at least one inorganic-based compound, at least one absorbing compound, and at least one material modification agent. In addition, methods of making an absorbing composition are also described that includes: a) combining at least one inorganic-based compound, at least one absorbing compound, at least one material modification agent, an acid/water mixture, and one or more solvents to form a reaction mixture; and b) allowing the reaction mixture to form the absorbing composition at room temperature. Another method of making an absorbing composition includes: a) combining at least one inorganic-based compound, at least one absorbing compound, at least one material modification agent, an acid/water mixture, and one or more solvents to form a reaction mixture; and b) heating the reaction mixture to form the absorbing composition. Yet another method of making an absorbing composition is described that includes: a) combining at least one inorganic-based compound, at least one absorbing compound, at least one material modification agent, and one or more solvents to form a reaction mixture, wherein the at least one material modification agent comprises at least one acid and water; and b) heating the reaction mixture to form an absorbing material, a coating or a film. In other methods of making an absorbing composition described herein, those methods include: a) combining at least one inorganic-based compound, at least one absorbing compound, at least one material modification agent, and one or more solvents to form a reaction mixture, wherein the at least one material modification agent comprises at least one acid and water; and b) allowing the reaction mixture to form an absorbing material, a coating or a film.
摘要:
A silicone-doped carbon interlayer dielectric (ILD) and its method of formation are disclosed. The ILD's dielectric constant and/or its mechanical strength can be tailored by varying the ratio of carbon-to-silicon in the silicon-doped carbon matrix.
摘要:
An interconnect structure for a microelectronic device includes an electrically conductive material (130, 730, 930) adjacent to a metallization layer (120, 320, 920). The electrically conductive material has a base (131, 931) and a body (132, 932). The base is wider than the body. The base and the body form a single monolithic structure having no internal interface. The interconnect structure may be manufactured by providing a substrate (110, 310, 910) to which the metallization layer is applied, forming a sacrificial layer (410) adjacent to the metallization layer and a resist layer (510) adjacent to the sacrificial layer, patterning the resist layer to form an opening (610) (thereby removing a portion of the sacrificial layer), placing the electrically conductive material in the opening, and removing the resist layer, the sacrificial layer, and a portion of the metallization layer.
摘要:
A method of forming air gaps in the interconnect structure of an integrated circuit device. The air gaps may be formed by depositing sacrificial layer over a dielectric layer and then depositing a permeable hard mask over the sacrificial layer. The sacrificial layer is subsequently removed to form air gaps. The permeable hard mask may have a thickness of less than approximately 250 nm, and internal stresses within the permeable hard mask may be controlled to prevent deformation of this layer. Other embodiments are described and claimed.
摘要:
In one embodiment, the present invention includes introducing a conventional precursor and an organic precursor having an organic porogen into a vapor deposition apparatus; and forming a dielectric layer having the organic porogen on a substrate within the vapor deposition apparatus from the precursors. In certain embodiments, at least a portion of the organic porogen may be removed after subsequent processing, such as dual damascene processing.
摘要:
In one embodiment, the present invention includes introducing a precursor containing hydrocarbon substituents and optionally a second conventional or hydrocarbon-containing precursor into a vapor deposition apparatus; and forming a dielectric layer having the hydrocarbon substituents on a substrate within the vapor deposition apparatus from the precursor(s). In certain embodiments, at least a portion of the hydrocarbon substituents may be later removed from the dielectric layer to reduce density thereof.