Abstract:
A waveguide structure is provided. The waveguide structure includes: a slot channel waveguide including first and second patterns, which are spaced apart from each other to define a slot; a first upper layer covering at least a portion of the slot channel waveguide; and a second upper layer covering the remaining portion of the slot channel waveguide. A thermo-optic coefficient (TOC) of the channel waveguide times a TOC of the second upper layer is a negative number.
Abstract:
Provided is a lithium secondary battery including a discharge unit capable of delaying or preventing a battery explosion. The lithium secondary battery includes a discharge unit disposed parallel to a battery body. The discharge unit includes a first electrode connected to a positive electrode of the battery body, a second electrode connected to a negative electrode of the battery body, and a discharge material film, disposed between the first electrode and the second electrode, inducing a abrupt discharge above a predetermined temperature. The discharge material film, e.g., a abrupt metal-insulator transition (MIT) material film can induce a abrupt discharge, thereby preventing or delaying a battery explosion.
Abstract:
Provided are a gas sensing apparatus and a gas sensing method using the apparatus. The gas sensing apparatus includes a detection chamber, a light source, a light sensor, a gas source, and a controller. The light source is disposed at one end of the detection chamber, and a light sensor is disposed at the other end of the detection chamber. The gas source provides gas to the detection chamber. The controller controls the light source and the light sensor. The light source includes a laser supplying laser light, and a light scanner reflecting and scanning the laser light in the detection chamber. The controller includes a phase sensitive detector electrically connected to the light sensor.
Abstract:
Provided are a low-voltage noise preventing circuit using an abrupt metal-insulator transition (MIT) device which can effectively remove a noise signal with a voltage less than a rated signal voltage. The abrupt MIT device is serially connected to the electrical and/or electronic system to be protected from the noise signal, and is subject to abrupt MIT at a predetermined voltage. Accordingly, low-voltage noise can be effectively removed.
Abstract:
A resonant tunneling hot electron device uses an interband tunneling double barrier structure as an electron injection layer and is capable of increasing PVR and peak current using an enhanced resonant interband tunneling effect through alignment of a hole confined state and an electron confined state by a Stark shift effect. It includes a conductive collector layer formed on a substrate; a conductive base layer having a conduction band minimum lower than that of the emitter barrier layer and the collector barrier layer and having high electron mobility; a collector barrier layer formed between the base layer and the collector layer; and an electron injection electron barrier layer of an enhanced interband resonant tunneling quantum well broken band gap heterostructure formed between the emitter layer and the base layer. This structure exploits an enhanced resonant tunneling effect due to alignments of quantum confined states by Stark shifts.
Abstract:
Provided is a semiconductor and a method for forming the same. The method includes forming a buried insulating layer locally in a substrate. The substrate is etched to form an opening exposing the buried insulating layer, and a silicon pattern spaced in at least one direction from the substrate is formed on the buried insulating layer. A first insulating layer is formed to enclose the silicon pattern.
Abstract:
Provided are semiconductor integrated circuits including a grating coupler for optical communication and methods of forming the same. The semiconductor integrated circuit includes: a cladding layer disposed on a semiconductor substrate; a grating coupler including an optical waveguide on the cladding layer and a grating on the optical waveguide; and at least one reflector formed in the cladding layer below the grating.
Abstract:
Provided is a semiconductor and a method for forming the same. The method includes forming a buried insulating layer locally in a substrate. The substrate is etched to form an opening exposing the buried insulating layer, and a silicon pattern spaced in at least one direction from the substrate is formed on the buried insulating layer. A first insulating layer is formed to enclose the silicon pattern.
Abstract:
Provided is a method of fabricating a semiconductor device. The method includes forming a first layer, a second layer, an ion implantation layer between the first and second layers, and an anti-oxidation layer on the second layer, and performing a heat treating process to form an insulating layer between the first and second layers while preventing loss of the second layer using the anti-oxidation layer.
Abstract:
The present invention provides a resonant tunneling electronic device having a plurality of nearly decoupled quantum barrier layers and quantum-well layers alternatively formed between an emitter layer and a collector layer, and has a stacked structure in such a manner that in the order of their stack the heights of the quantum barriers are gradually increased, and the widths of the quantum-wells interposed between the quantum barrier layers are gradually decreased, so that electron resonant tunneling through the aligned quantum with confined states under the application of external bias can occur.