Abstract:
The semiconductor element according to an embodiment comprises: a light-emitting structure comprising a p-type semiconductor layer, an active layer disposed under the p-type semiconductor layer, and an n-type semiconductor layer disposed under the active layer; a protective layer disposed on the side surface and upper surface of the light-emitting structure; a p-type contact layer disposed over the p-type semiconductor layer; and an n-type contact layer disposed under the n-type semiconductor layer, wherein: the width of the lower surface of the n-type semiconductor layer is provided greater than that of the lower surface of the p-type semiconductor layer; the width of the upper surface of the n-type contact layer is provided greater than that of the upper surface of the n-type semiconductor layer; and the angle between the lower surface of the n-type semiconductor layer and the side surface of the light-emitting structure may be 30-80 degrees.
Abstract:
A light emitting device package includes a first frame and a second frame disposed to be spaced apart from each other; a body disposed between the first and second frames and comprising a recess; a first adhesive on the recess; a light emitting device on the first adhesive; a second adhesive disposed between the first and second frames and the light emitting device; and a resin portion disposed to surround the second adhesive and a partial region of the light emitting device.
Abstract:
A light emitting device according to the embodiment includes a first electrode; a light emitting structure including a first semiconductor layer, an active layer and a second semiconductor layer on the first electrode; a second electrode on the light emitting structure; and a control switch installed on the light emitting structure to control the light emitting structure.
Abstract:
Provided is a semiconductor device. The semiconductor device comprises a support substrate; a bonding layer on the support substrate; and a plurality of semiconductor layers on the bonding layer, wherein the bonding layer includes a first bonding layer between the support substrate and the plurality of semiconductor layers and a second bonding layer between the first bonding layer and the plurality of semiconductor layers, wherein an at least one of the first and second bonding layers includes a multi layers, wherein the first and second bonding layers include a same material from each other, wherein the first and second bonding layers includes a different material from the plurality of semiconductor layers.
Abstract:
A light emitting device package according to an embodiment may include: a first frame including a first opening passing through upper and lower surfaces, and a second frame spaced apart from the first frame and including a second opening; first and second conductive layers disposed in the first and second openings, respectively; a body disposed between the first and second frames; a first resin disposed on the body; and a light emitting device disposed on the first resin. According to an embodiment, the light emitting device may include a first bonding part electrically connected with the first frame and a second bonding part spaced apart from the first bonding part and electrically connected with the second frame, and the first and second bonding parts may be disposed on the first and second openings, respectively. According to an embodiment, the first and second frames may include first and second metal layers having third and fourth openings passing through upper and lower surfaces around the first and second openings, respectively, and widths of the first and second bonding parts in a horizontal direction may be greater than widths of upper surfaces of the first and second openings in the horizontal direction.
Abstract:
Disclosed in an embodiment are a semiconductor device and a semiconductor device package including the same, the semiconductor device comprising: a semiconductor structure including a first light emitting unit and a second light emitting unit; a first electrode for electrically connecting a first conductive type semiconductor layer of the first light emitting unit with a first conductive type semiconductor layer of the second light emitting unit; and a second electrode for electrically connecting a second conductive type semiconductor layer of the first light emitting unit with a second conductive type semiconductor layer of the second light emitting unit, wherein: the first electrode includes a first pad arranged on the first light emitting unit, a first branch electrode arranged on the first light emitting unit, and a first extension electrode arranged on the second light emitting unit; the second electrode includes a second pad arranged on the second light emitting unit, a second branch electrode arranged on the second light emitting unit, and a second extension electrode arranged on the first light emitting unit; the semiconductor structure includes a first spacing section which extends in a first direction and comparts the first light emitting unit and the second light emitting unit; and the first pad and the second pad are not overlapped in the first direction and a second direction which is perpendicular to the first direction.
Abstract:
A semiconductor device package according to the present invention comprises: a semiconductor device including a substrate, a light-emitting structure, and a first pad and second pad electrically connected to the light-emitting structure; a wavelength converting unit disposed to surround the upper surface and side surfaces of the semiconductor device; and a light control unit disposed on the wavelength converting unit, wherein the wavelength converting unit may include an upper surface spaced a first spacing interval apart in a vertical direction from the semiconductor device, and a side surface spaced a second spacing interval apart in a horizontal direction from the semiconductor device. The present invention relates to a semiconductor device package and a light source module. A semiconductor device package according to the present invention may include a semiconductor device for emitting light, a wavelength converting unit, and a light control unit and may emit white light in directions of four side surfaces surrounding the wavelength converting unit and in an upward direction of the light control unit. A wavelength converting unit according to the present invention may be disposed at the upper surface of a semiconductor device and four side surfaces surrounding the semiconductor device, receive light emitted from the semiconductor device and incident thereto and diffuse the received light, convert the wavelength of light incident thereto and provide the converted light, and emit white light in four side surface directions and in an upward direction. A light control unit according to the present invention may be disposed on the upper surface of a wavelength converting unit, reflect a part of white light incident thereon from the wavelength converting unit, and transmit a part of the white light.
Abstract:
A light emitting device package including a first frame having first and second through holes; a light emitting device including first and second electrode pads; a first resin disposed between the first frame and the light emitting device; and a conductive material disposed in the first through hole and the second through hole. Further, the first electrode pad of the light emitting device overlaps with the first through hole and the second electrode pad of the light emitting device overlaps with the second through hole; the first electrode pad and the second electrode pad are spaced apart from each other; and the conductive material in the first and second through holes respectively contacts the first and second electrode pads, and a first side surface of the first electrode pad and a second side surface of the second electrode pad facing the first side surface contact the first resin.
Abstract:
A light emitting device package can include first and second frames spaced apart from each other; a package body including a body portion disposed between the first and second frames; a light emitting device including first and second electrode pads; a first through hole in the first frame; a second through hole in the second frame; a conductive material disposed in the first and second through holes; and an intermetallic compound layer disposed between the conductive material and the first frame, and between the conductive material and the second frame, in which the first electrode pad of the light emitting device overlaps with the first through hole in the first frame, the second electrode pad of the light emitting device overlaps with the second through hole in the second frame, and the first and second electrode pads are spaced apart from each other.
Abstract:
The light emitting device package disclosed in the embodiment includes: first and second frames having first and second through holes; a body disposed between the first and second frames; a light emitting device including a first bonding pad and a second bonding pad; and a conductive part in the first and second through holes. wherein at least one of the first and second bonding pads faces the first and second frames and overlaps with the first and second through holes and includes a contact region contacting the conductive part and a first non-contact non-contacting the conducive part.