Abstract:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.
Abstract:
Embodiments are directed to microscale and millimeter scale multi-layer structures (e.g. probe structures for making contact between two electronic components for example in semiconductor wafer and chip and electronic component test applications). Some embodiments of the invention provide structures that include a core and shell on at least one layer where the layer including the shell is formed from at least one core material and at least one shell material wherein the shell material is different from a shell material or a single structural material on at least one of an immediately preceding layer or an immediately succeeding layer and wherein the core material is different from any core material on at least one of an immediately preceding layer or an immediately succeeding layer.
Abstract:
Forming buckling beam probe arrays having MEMS probes engaged with guide plates during formation or after formation of the probes while the probes are held in the array configuration in which they were formed is disclosed. Probes can be formed in, or laterally aligned with, guide plate through holes. Guide plate engagement can occur by longitudinally locating guide plates on probes that are partially formed or fully formed with exposed ends, by forming probes within guide plate through holes, by forming guide plates around probes, or forming guide plates in lateral alignment with arrayed probes and then longitudinally engaging the probes and the through holes of the guide plates. Arrays can include probes and a substrate to which the probes are bonded with one or more guide plates. Final arrays can include probes held by guide plates with aligned or laterally shifted hole patterns.
Abstract:
Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
Abstract:
Embodiments are directed to fuel injectors for internal combustion engines (e.g. engines with reciprocating pistons and with compression-ignition or spark-ignition, Wankel engines, turbines, jets, rockets, and the like) and more particularly to improved nozzle configurations for use as part of such fuel injectors. Other embodiments are directed to enabling fabrication technology that can provide for formation of nozzles with complex configurations and particularly for technologies that form structures via multiple layers of selectively deposited material or in combination with fabrication from a plurality of layers where critical layers are planarized before attaching additional layers thereto or forming additional layers thereon. Other embodiments are directed to methods and apparatus for integrating such nozzles with injector bodies.
Abstract:
Some embodiments are directed to techniques for building single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while others use an intervening adhesion layer material. Some embodiments use different seed layer and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while others apply the materials in blanket fashion. Some embodiments remove extraneous material via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer.
Abstract:
Electrochemical fabrication processes and apparatus for producing single layer or multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers includes operations for reducing stress and/or curvature distortion when the structure is released from a sacrificial material which surrounded it during formation and possibly when released from a substrate on which it was formed. Six primary groups of embodiments are presented which are divide into eleven primary embodiments. Some embodiments attempt to remove stress to minimize distortion while others attempt to balance stress to minimize distortion.
Abstract:
Vertical probes, formed of at least one layer that longitudinally includes a first and a second end and a central portion, with the central portion including at least three compliant arms wherein each of the two outer arms include a material having a yield strength greater than a first amount and the at least one intermediate arm is formed of a material having a yield strength less than the first yield strength amount wherein a yield strength of the material of the intermediate arm has a ratio to that of an outer arm of less than 1, more preferably less than 0.8, even more preferably less than 0.6, and most preferably less than 0.4.
Abstract:
Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
Abstract:
Probes for testing (e.g. wafer level testing or socket level testing) of electronic devices (e.g. semiconductor devices) and more particularly, arrays of such probes are provided. Probes are formed by initially fabricating probe preforms in batch with bases and/or ends located in array patterns, directly or indirectly on one or more build substrates with the arrayed preforms being in a longitudinally compressed state and whereafter the preforms are longitudinally plastically deformed to yield probes or partially formed probes with extended longitudinal lengths. Probes may be formed with deformable spring elements formed from one or more single layers which are joined by vertical elements located on other layers or they may be formed by spring elements that are formed as multi-layer structures. Arrays may include probe preforms with laterally overlapping or interlaced structures (but longitudinally displaced) which may remain laterally overlapping or become laterally displaced upon plastic deformation.